• 제목/요약/키워드: Algae Cultivation

검색결과 89건 처리시간 0.022초

미세기포를 이용한 Spirulina platensis의 입자 부상분리 특성 및 수거효율 (Particle Separation Characteristics and Harvesting Efficiency of Spirulina platensis Using Micro-bubble)

  • 곽규동;김미숙;곽동희
    • 상하수도학회지
    • /
    • 제27권5호
    • /
    • pp.621-629
    • /
    • 2013
  • Since algae had been issued an environmental problem, water blooms, deepened due to increase of retention water basin in Korea as well as a biomass resource for producing biofuel, this study conducted a series of experiments for Spirulina platensis using the flotation process with micro-bubble. To elevate utilization of collected-algae, this study focused on omitting or minimizing coagulant's doses as changing a cultivation period and condition affected on physical property change of algae. Two coagulants, PAC and Chitosan, were used to test the collecting rate of algae and the result found no difference between two rates. For flotation experiments without adding the coagulant, dried algae weight (passing 14 days after cultivation for 20 days) detected high separation efficiency 98.2 % and it (passing 7 days after long-term cultivation for 28 days) presented good separation efficiency 91.9 %. Chlorophyll's separation efficiency showed a similar tendency with the case of the dried algae weight. In endogeny conditions, a light source and a carbon source were not considerably affected on the flotation separation efficiency. Thus, this study confirms that algae biomass may be collected without the coagulant during the endogeny condition period after enough cultivation time, 3 weeks.

Cultivation of Nostoc flagelliforme on Solid Medium

  • Su Jianyu;Jia Shiru;Qiao Changsheng;Kim Jung-Gyu;Hong Wan-Hae;Cho Ki-An;Choi DuBok
    • 환경생물
    • /
    • 제23권2호
    • /
    • pp.135-140
    • /
    • 2005
  • In order to construct an artificial cultivation of Nostoc flagelliforme on solid medium, we attempted to assess the viability of approaches, which utilized either BG-11 agar or sand medium using both sterile and non-sterile algal segments. In the trial in which the BG -11 agar medium was inoculated with the non-sterile algal segments, the algae exhibited the rapid growth in the initial 4 days of cultivation. However, after 4 days of cultivation, the growth rate of the algae slowed, and the algal growth was completely stopped by 7 days of cultivation. When the BG -11 medium was inoculated with the sterile algal segments, the algae exhibited the rapid growth for a longer period of 8 days, reaching a length of 24.9 mm. The growth rate during this period was measured to be $24.5\%$. After the 8 days of cultivation, the algal growth rate began to slow and had almost stopped by the 13 days of cultivation. On the other hand, when the sterile algal segments were inoculated onto a sand plate, the algal segments decomposed, reaching total decomposition after 11 days of cultivation. By way of contrast, the desiccation treatment samples continued to grow for 14 days of cultivation. After 14 days of cultivation, the algae achieved a length of 26.1 mm, with a growth rate of $30.6\%$. Our results indicate that periodic desiccation may constitute an effective strategy for the prevention of algal decomposition.

Omega-7 producing alkaliphilic diatom Fistulifera sp. (Bacillariophyceae) from Lake Okeechobee, Florida

  • Berthold, David Erwin;Rosa, Nina de la;Engene, Niclas;Jayachandran, Krish;Gantar, Miroslav;Laughinghouse, Haywood Dail IV;Shetty, Kateel G.
    • ALGAE
    • /
    • 제35권1호
    • /
    • pp.91-106
    • /
    • 2020
  • Incorporating renewable fuel into practice, especially from algae, is a promising approach in reducing fossil fuel dependency. Algae are an exceptional feedstock since they produce abundant biomass and oils in short timeframes. Algae also produce high-valued lipid products suitable for human nutrition and supplement. Achieving goals of producing algae fuels and high-valued lipids at competitive prices involves further improvement of technology, especially better control over cultivation. Manipulating microalgae cultivation conditions to prevent contamination is essential in addition to promoting optimal growth and lipid yields. Contamination of algal cultures is a major impediment to algae cultivation that can however be mitigated by choosing extremophile microalgae. This work describes the isolation of alkali-tolerant / alkaliphilic microalgae native to South Florida with ideal characteristics for cultivation. For that purpose, water samples from Lake Okeechobee were inoculated into Zarrouk's medium (pH 9-12) and incubated for 35 days. Selection resulted in isolation of three strains that were screened for biomass and lipid accumulation. Two alkali-tolerant algae Chloroidium sp. 154-1 and Chlorella sp. 154-2 were poor lipid accumulators. One of the isolates, the diatom Fistulifera sp. 154-3, was identified as a lipid accumulating, alkaliphilic organism capable of producing 0.233 g L-1 d-1 dry biomass and a lipid content of 20-30% dry weight. Lipid analysis indicated the most abundant fatty acid within Fistulifera sp. was palmitoleic acid (52%), or omega-7, followed by palmitic acid (17%), and then eicosapentanoic acid (15%). 18S rRNA phylogenetic analysis formed a well-supported clade with Fistulifera species.

A Study on Cultivation of Petalonia fascia (Scytosiphonales, Phaeophyta) by Vegetative Regeneration

  • Lee,Kang-Hwa;Cho,Jae-Hyun;Shin,Jong-Ahm
    • ALGAE
    • /
    • 제18권4호
    • /
    • pp.333-339
    • /
    • 2003
  • To establish a cultivation method of Petalonia fascia, seeds and seedlings cultures and growth tests were performed at the Daeri aquafarm in Haeui, Shinan, Jeollanamdo, Korea. Gametes were easily released from the mature plurilocular sporangia. They developed to crustose discoidal stolons and grew to filamentous and discoidal stolons. The indoor seeding was performed by using the 100-150 ${\mu}m$long fragments of stolons on Porphyra nets and the erect thalli developed from the cuttings when the seawater temperatures were 10-15$^{\circ}C$. In the experimental cultivation in the sea, 1-2mm long plantlets were found after 15 days of cultivation; after two months thalli grew to their maximal size of 215-355 mm long blades; after three months the length of thalli began to decrease due to distal disintegration and the plant color changed to yellow and epiphytic diatoms were attached on the thalli, which deteriorated the quality of products. The cultivation of P. fascia by the regeneration of filamentous-discoidal complexes was carried out successfully for the first time in Korea.

Nutrient removal from secondary effluent using filamentous algae in raceway ponds

  • Min, Kyung-Jin;Lee, Jongkeun;Cha, Ho-Young;Park, Ki Young
    • Membrane and Water Treatment
    • /
    • 제10권3호
    • /
    • pp.191-199
    • /
    • 2019
  • In this study, we investigated the cultivation possibility using Hydrodictyon reticulatum in a continuous raceway pond as a tertiary sewage treatment plant. The cultivation possibility was evaluated by varying the light quantity, wavelength, and hydraulic retention time (HRT). Experimental results showed that the growth rates of algae and the removal efficiencies of nutrients increased as the light quantity increased, and the maximum photosynthetic rate was maintained at $100{\mu}mol/m^2{\cdot}s$ or higher. When wavelength was varied, nutrient removal efficiency and growth rate increased in the following order: green light, red light, white light, and blue light. The nutrient removal efficiencies and algae productivity in HRT 4 d were better than in HRT 8 d. We conclude that if Hydrodictyon reticulatum is cultivated in a raceway pond and used as a tertiary treatment facility in a sewage treatment plant, nutrients can be effectively removed, and production costs can be reduced.

해조류를 이용한 친환경 에너지소재 (Algae Based Energy Materials)

  • 한성옥
    • 신재생에너지
    • /
    • 제4권4호
    • /
    • pp.50-55
    • /
    • 2008
  • Recently, sea algae cultivation as carbon sink and carbon dioxide fixation have been considered. Also, various researches on bioenergy derived from sea algae and the utilization of fibers, saccharide, and lipid of sea algae have been performing. Till now, algae fibers has been used for manufacturing of paper and reinforcing of polymer composites and the extracts of sea algae are used for cosmetics, pharmaceutical materials and food such as agar. Especially, algae fiber has so similar properties to cellulose in terms of crystallinity and functional groups that it can be utilized as reinforcements of biocomposites. Biocomposites as alternatives of glass fiber reinforced polymer composites are environmentally friendly polymer composites reinforced with natural fibers and are actively applying to the automobiles and construction industries. In this paper, characteristics of algae fiber and biocomposites reinforced with algae fiber as environmentally friendly energy materials have been introduced.

  • PDF

Analysis for Energy Efficiency of the Algae Façade - Focused on Closed Bioreactor System -

  • Kim, Tae-Ryong;Han, Seung-Hoon
    • KIEAE Journal
    • /
    • 제14권6호
    • /
    • pp.15-21
    • /
    • 2014
  • Recently, energy generation using algae technology is being promising due to the emerging issues on energy insufficiency and environmental contamination, although the solution has not been resolved in aspect of technological and economical efficiencies since it was originally proposed in the early 1980s by many scholars. The energy production technology using algae materials has great values as not only a solution for new energy generation but also an eco-friendly sustainable building equipment system. In addition, cultivation tank for algae using water sources seems to play a role as a decreasing system for thermal transmittance on building components. This study aims at investigating the adaptability towards the future sustainable building with algae technology and testifying the energy efficiency of the algae skins by operating a couple of simulation tools to measure building performances for the proposed prototype of the façade system.

Temperature ranges for survival and growth of juvenile Saccharina sculpera (Laminariales, Phaeophyta) and applications for field cultivation

  • Kim, Soo Hong;Kim, Young Dae;Hwang, Mi Sook;Hwang, Eun Kyoung;Yoo, Hyun Il
    • ALGAE
    • /
    • 제36권4호
    • /
    • pp.231-240
    • /
    • 2021
  • Saccharina sculpera is highly valued for human consumption and value-added products. However, natural resources of this kelp have decreased sharply and it is in danger of extinction. Resources recovery through cultivation is being trialed to enable the sustainable use of this species. In this study, the temperature range for survival and optimal growth of juvenile S. sculpera was identified and applied to field cultivation. This study investigated the survival and growth of juvenile S. sculpera under six temperatures (i.e., 5, 10, 15, 16, 18, and 20℃) and two light intensities (i.e., 20 and 40 µmol photons m-2 s-1) in an indoor culture experiment. In these experiments, the blade length decreased at 16℃ under the both light intensities. The thalli died at 20℃ and 20 µmol photons m-2 s-1, and at 18-20℃ and 40 µmol photons m-2 s-1. During the field cultivation, early growth of S. sculpera was highest at the 5 m depth and growth decreased as the water depth increased. When the initial rearing depth was maintained without adjustment throughout the cultivation period (from December to October), all the cultivated S. sculpera plants died during August and September. However, S. sculpera plants lowered from 5 to 15 m and grew to 90.8 ± 13.1 cm in July. The seawater temperature at 15 m depth was similar to the upper level of thermal tolerance demonstrated by juvenile S. sculpera in the indoor culture experiments (16℃ or lower). The plants were subsequently lowered to 25 m depth in August, which eventually led to their maturation in October. The present study confirmed that improved growth rates and a delay in biomass loss can be achieved by adjusting the depth at which the seaweeds are grown during the cultivation period. These results will contribute to the establishment of sustainable cultivation systems for S. sculpera.

Development of a sustainable land-based Gracilaria cultivation system

  • Kim, Jang K.;Yarish, Charles
    • ALGAE
    • /
    • 제29권3호
    • /
    • pp.217-225
    • /
    • 2014
  • Land-based seaweed (Gracilaria) cultivation systems may provide products with high quality and biosafety for human consumption, as well as for other high value applications. However, a limitation for this land based system is high management costs. The objective of this study was to determine if the management costs for Gracilaria cultivation can be reduced without a decrease in productivity by using $CO_2$ injection along with a high stocking density and high photosynthetically active radiation (PAR), and commercially available fertilizers. When Gracilaria tikvahiae was cultivated at a high stocking density and high PAR, coupled with $CO_2$ enhancement, the productivity was significantly higher than that at a lower stocking density, low light without $CO_2$ injection. We also found that G. tikvahiae grown in a medium of commercially available fertilizer (Jack's Special, JS) showed a similar growth rate and productivity to that grown in von Stosch's enriched (VSE) seawater, while the cost for JS media is only 2% of the cost for VSE. These results suggest that $CO_2$ injection and commercial fertilizer may be a potential way to provide sustainability in land-based Gracilaria cultivation systems.

Spirulina platensis의 옥외배양 최적화 및 오염생물 구제 (Optimization of Outdoor Cultivation of Spirulina platensis and Control ofContaminant Organisms)

  • 김충재;정윤호;최강국;박용하;안치용;오희목
    • ALGAE
    • /
    • 제21권1호
    • /
    • pp.133-139
    • /
    • 2006
  • Outdoor cultivation of cyanobacterium Spirulina platensis was carried out for 40 days in a batch mode. A half concentration of the SOT based on the underground water was used as culture medium. Working volume was 5.7 tons with 0.2 m depth. During cultivation, mean water temperature, DO and light intensity were all in proper conditions for the S. platensis growth. The adjustment of pH to over 10 with Na2CO3 and addition of the 1.5% natural salt were very effective to delete contaminant organisms, Chlamydomonas moewusii and Chlorella minutissima occurred one after the other in the culture. The mean productivity of the biomass based on the dry cell weight from 14 to 25 days, after the contaminants were deleted, was 7.8 g ·m–2· d–1, which was relatively high productivity in that a half concentration of the SOT was used for the culture. Underground water used in the culture minimized contaminants invasion and addition of the 1.5% natural salt was effective to delete contaminants as well as acted as mineral supplement in outdoor cultivation of S. platensis. Harvesting using the floating activity of S. platensis was effective from mass floating in day time after overnight without agitation and illumination.