Browse > Article
http://dx.doi.org/10.4490/algae.2014.29.3.217

Development of a sustainable land-based Gracilaria cultivation system  

Kim, Jang K. (Department of Marine Sciences, University of Connecticut)
Yarish, Charles (Department of Ecology and Evolutionary Biology, University of Connecticut)
Publication Information
ALGAE / v.29, no.3, 2014 , pp. 217-225 More about this Journal
Abstract
Land-based seaweed (Gracilaria) cultivation systems may provide products with high quality and biosafety for human consumption, as well as for other high value applications. However, a limitation for this land based system is high management costs. The objective of this study was to determine if the management costs for Gracilaria cultivation can be reduced without a decrease in productivity by using $CO_2$ injection along with a high stocking density and high photosynthetically active radiation (PAR), and commercially available fertilizers. When Gracilaria tikvahiae was cultivated at a high stocking density and high PAR, coupled with $CO_2$ enhancement, the productivity was significantly higher than that at a lower stocking density, low light without $CO_2$ injection. We also found that G. tikvahiae grown in a medium of commercially available fertilizer (Jack's Special, JS) showed a similar growth rate and productivity to that grown in von Stosch's enriched (VSE) seawater, while the cost for JS media is only 2% of the cost for VSE. These results suggest that $CO_2$ injection and commercial fertilizer may be a potential way to provide sustainability in land-based Gracilaria cultivation systems.
Keywords
carbon dioxide; fertilizer; Gracilaria; land based aquaculture; nutrients, sustainability;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Figueroa, F. L., Israel, A., Neori, A., Martinez, B., Malta, E. J., Put, A., Inken, S., Marquardt, R., Abdala, R. T. & Korbee, N. 2010. Effect of nutrient supply on photosynthesis and pigmentation to short-term stress (UV radiation) in Gracilaria conferta (Rhodophyta). Mar. Pollut. Bull. 60:1768-1778.   DOI   ScienceOn
2 Craigie, J. S. & Shacklock, P. F. 1989. Culture of Irish moss. In Boghen, A. D. (Ed.) Cold-Water Aquaculture in Atlantic Canada. Canadian Institute for Research on Regional Development, University of Moncton, Moncton, NB, pp. 241-270.
3 DeBusk, T. A. & Ryther, J. H. 1984. Effects of seawater exchange, pH and carbon supply on the growth of Gracilaria tikvahiae (Rhodophyceae) in large-scale cultures. Bot. Mar. 27:357-362.
4 Enright, C. T. & Craigie, J. S. 1981. Effects of temperature and irradiance on growth and respiration of Chondrus crispus Stackh. In Levring, T. (Ed.) Proc. 10th Int. Seaweed Symp., Walter de Gruyter, Berlin, pp. 271-276.
5 Food and Agriculture Organization of the United Nations. 2014. Global Aquaculture Production. Available from: http://www.fao.org/fishery/statistics/global-aquaculture-production/en. Accessed Jul 7, 2014.
6 Friedlander, M. 2001. Inorganic nutrition in pond cultivated Gracilaria conferta (Rhodophyta): nitrogen, phosphate and sulfate. J. Appl. Phycol. 13:279-286.   DOI   ScienceOn
7 Friedlander, M. & Levy, I. 1995. Cultivation of Gracilaria in outdoor tanks and ponds. J. Appl. Phycol. 7:315-324.   DOI   ScienceOn
8 Gao, K., Aruga, Y., Asada, K. & Kiyohara, M. 1993. Influence of enhanced $CO_2$ on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J. Appl. Phycol. 5:563-571.   DOI
9 Hanisak, M. D. 1987. Cultivation of Gracilaria and other macroalgae in Florida for energy production. In Bird, K. T. & Benson, P. H. (Eds.) Seaweed Cultivation for Renewable Resources. Elsevier, New York, pp. 191-218.
10 Hanisak, M. D. & Ryther, J. H. 1984. Cultivation biology of Gracilaria tikvahiae in the United States. Hydrobiologia 116/117:295-298.   DOI
11 Kim, J. K., Duston, J., Corey, P. & Garbary, D. J. 2013a. Marine finfish effluent bioremediation: effects of stocking density and temperature on nitrogen removal capacity of Chondrus crispus and Palmaria palmata (Rhodophyta). Aquaculture 414/415:210-216.   DOI   ScienceOn
12 Harrison, K. L. 2008. Organic plus: regulating beyond the current organic standards. 25 Pace Envtl. L. Rev. 211-234. Available from: http://digitalcommons.pace.edu/pelr/vol25/iss1/5. Accessed Jul 7, 2014.
13 Huguenin, J. E. 1976. An examination of problems and potentials for future large-scale intensive seaweed culture systems. Aquaculture 9:313-342.   DOI   ScienceOn
14 Israel, A., Katz, S., Dubinsky, Z., Merrill, J. E. & Friedlander, M. 1999. Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta). J. Appl. Phycol. 11:447-453.   DOI
15 Kim, J. K., Kraemer, G. P., Neefus, C. D., Chung, I. K. & Yarish, C. 2007. Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. J. Appl. Phycol. 19:431-440.   DOI
16 Kim, J. K., Kraemer, G. P. & Yarish, C. 2012. Metabolic plasticity of nitrogen assimilation by Porphyra umbilicalis (Linnaeus) Kutzing. J. Ocean Univ. China 11:517-526.   DOI
17 Matos, J., Costa, S., Rodrigues, A., Pereira, R. & Sousa Pinto, I. 2006. Experimental integrated aquaculture of fish and red seaweeds in Northern Portugal. Aquaculture 252:31-42.   DOI   ScienceOn
18 Kim, J. K., Kraemer, G. P. & Yarish, C. 2013b. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra. PLoS One 8:e69961.   DOI
19 Kim, J. K., Kraemer, G. P. & Yarish, C. 2014. Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary. Aquaculture 433:148-156.   DOI   ScienceOn
20 Lapointe, B. E. & Ryther, J. H. 1978. Some aspects of the growth and yield of Gracilaria tikvahiae in culture. Aquaculture 15:185-193.   DOI   ScienceOn
21 Lapointe, B. E. & Ryther, J. H. 1979. The effects of nitrogen and seawater flow rate on the growth and biochemical composition of Gracilaria foliifera var. angustissima in mass outdoor cultures. Bot. Mar. 22:529-537.
22 Martinez-Aragon, J. F., Hernandez, I., Perez-Llorens, J. L., Vazquez, R. & Vergara, J. J. 2002. Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters. 1. Phosphate. J. Appl. Phycol. 14:365-374.   DOI   ScienceOn
23 Mata, T. M., Martins, A. A. & Caetano, N. S. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14:217-232.   DOI   ScienceOn
24 Ott, F. D. 1965. Synthetic media and techniques for the xenic cultivation of marine algae and flagellata. Va. J. Sci. 16:205-218.
25 Nagler, P. L., Glenn, E. P., Nelson, S. G. & Napolean, S. 2003. Effects of fertilization treatment and stocking density on the growth and production of the economic seaweed Gracilaria parvispora (Rhodophyta) in cage culture at Molokai, Hawaii. Aquaculture 219:379-391.   DOI   ScienceOn
26 Neori, A., Shpigel, M. & Ben-Ezra, D. 2000. A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186:279-291.   DOI   ScienceOn
27 Nettleton, J. C., Mathieson, A. C., Thornber, C., Neefus, C. D. & Yarish, C. 2013. Introduction of Gracilaria vermiculophylla (Rhodophyta, Gracilariales) to New England, USA: estimated arrival times and current distribution. Rhodora 115:28-41.   DOI
28 Redmond, S., Green, L., Yarish, C., Kim, J. & Neefus, C. 2014. New England seaweed culture handbook-nursery systems. Connecticut Sea Grant CTSG-14-01. Available from: http://seagrant.uconn.edu/publications/aquaculture/handbook.pdf. Accessed Jul 7, 2014.
29 Pereira, R., Yarish, C. & Critchley, A. T. 2013. Seaweed aquaculture for human foods in land based and IMTA systems. In Meyers, R. A. (Ed.) Encyclopedia of Sustainability Science and Technology. Springer, New York, pp. 9109-9128.
30 Phillips, J. C. & Hurd, C. L. 2004. Kinetics of nitrate, ammonium, and urea uptake by four intertidal seaweeds from New Zealand. J. Phycol. 40:534-545.   DOI   ScienceOn
31 Qi, Z., Liu, H., Li, B., Mao, Y., Jiang, Z., Zhang, J. & Fang, J. 2010. Suitability of two seaweeds, Gracilaria lemaneiformis and Sargassum pallidum, as feed for the abalone Haliotis discus hannai Ino. Aquaculture 300:189-193.   DOI   ScienceOn
32 von Stosch, H. A. 1963. Wirkungen von jod und arsenit auf meeresalgen in kultur. In Davy de Virville, A. & Feldmann, J. (Eds.) Proc. 4th Int. Seaweed Symp., Pergamon Press, Oxford, pp. 142-150.
33 Ryder, E., Nelson, S., Glenn, E., Nagler, P., Napolean, S. & Fitzsimmons, K. 2004. Review: production of Gracilaria parvispora in two-phase polyculture systems in relation to nutrient requirements and uptake. Bull. Fish. Res. Agency Suppl. 1:71-76.
34 Simpson, F. J., Neish, A. C., Shacklock, P. F. & Robson, D. R. 1978. The cultivation of Chondrus crispus: effect of pH on growth and production of carrageenan. Bot. Mar. 21:229-236.
35 Tyler, A. C., McGlathery, K. J. & Macko, S. A. 2005. Uptake of urea and amino acids by the macroalgae Ulva lactuca (Chlorophyta) and Gracilaria vermiculophylla (Rhodophyta). Mar. Ecol. Prog. Ser. 294:161-172.   DOI
36 Corey, P., Kim, J. K., Duston, J., Garbary, D. J. & Prithiviraj, B. 2013. Bioremediation potential of Palmaria palmata and Chondrus crispus (Basin Head): effect of nitrate and ammonium ratio as nitrogen source on nutrient removal. J. Appl. Phycol. 25:1349-1358.   DOI   ScienceOn
37 Corey, P., Kim, J. K., Garbary, D. J., Prithiviraj, B. & Duston, J. 2012. Cultivation of red macroalgae for potential integration with Atlantic halibut: effects of temperature and nitrate concentration on growth and nitrogen removal. J. Appl. Phycol. 24:441-448.   DOI
38 Bird, N. L., Chen, L. C. -M. & McLachlan, J. 1979. Effects of temperature, light and salinity on growth in culture of Chondrus crispus, Furcellaria lumbricalis, Gracilaria tikvahiae (Gigartinales, Rhodophyta), and Fucus serratus (Fucales, Phaeophyta). Bot. Mar. 22:521-528.
39 Caines, S., Manriquez-Hernandez, J. A., Duston, J., Corey, P. & Garbary, D. J. 2014. Intermittent aeration affects the bioremediation potential of two red algae cultured in finfish effluent. J. Appl. Phycol. Advanced online publication. http://dx.doi.org/10.1007/s10811-014-0247-0.   DOI   ScienceOn
40 Corey, P., Kim, J. K., Duston, J. & Garbary, D. J. 2014. Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system. Algae 29:35-45.   과학기술학회마을   DOI   ScienceOn
41 Abreu, M. H., Pereira, R., Yarish, C., Buschmann, A. H. & Sousa-Pinto, I. 2011. IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77-87.   DOI   ScienceOn
42 Bidwell, R. G. S. & McLachlan, J. 1985. Carbon nutrition of seaweeds: photosynthesis, photorespiration and respiration. J. Exp. Mar. Biol. Ecol. 86:15-46.   DOI   ScienceOn
43 Pereira, R. & Yarish, C. 2008. Mass production of marine macroalgae. In Jorgensen, S. E. & Fath, B. D. (Eds.) Encyclopedia of Ecology. Vol. 3. Ecological Engineering. Oxford, Elsevier, pp. 2236-2247.