Browse > Article
http://dx.doi.org/10.4490/ALGAE.2006.21.1.133

Optimization of Outdoor Cultivation of Spirulina platensis and Control ofContaminant Organisms  

Kim, Choong-Jae
Jung, Yun-Ho
Choi, Gang-Guk
Park, Yong-Ha
Ahn, Chi-Yong
Oh, Hee-Mock
Publication Information
ALGAE / v.21, no.1, 2006 , pp. 133-139 More about this Journal
Abstract
Outdoor cultivation of cyanobacterium Spirulina platensis was carried out for 40 days in a batch mode. A half concentration of the SOT based on the underground water was used as culture medium. Working volume was 5.7 tons with 0.2 m depth. During cultivation, mean water temperature, DO and light intensity were all in proper conditions for the S. platensis growth. The adjustment of pH to over 10 with Na2CO3 and addition of the 1.5% natural salt were very effective to delete contaminant organisms, Chlamydomonas moewusii and Chlorella minutissima occurred one after the other in the culture. The mean productivity of the biomass based on the dry cell weight from 14 to 25 days, after the contaminants were deleted, was 7.8 g ·m–2· d–1, which was relatively high productivity in that a half concentration of the SOT was used for the culture. Underground water used in the culture minimized contaminants invasion and addition of the 1.5% natural salt was effective to delete contaminants as well as acted as mineral supplement in outdoor cultivation of S. platensis. Harvesting using the floating activity of S. platensis was effective from mass floating in day time after overnight without agitation and illumination.
Keywords
culture vessel; floating activity; outdoor mass culture; Spirulina platensis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Busson F. 1971. Spirulina platensis (Gom.) Geitler et Spirulina geitleri J. de Toni, Cyanophycees Alimentaires. Service de Sante, Marseille
2 Castenholz R.W. 1989. Subsection III, Order Oscillatoriales. In: Staley J.T., Bryant M.P., Pfenning N. and Holt J.G. (eds), Bergey's Manual of Systematic Bacteriology. Williams and Wilkins Co., Baltimore. Vol. 3, pp. 1771-1780
3 Joo D.S., Jung C.K., Lee C.H. and Cho S.Y. 2000. Content of phycocyanins and growth of Spirulina platensis with culture conditions. J. Korean Fish. Soc. 33: 475-481
4 Kim S.-G., Choi A., Ahn C.-Y., Park Y.-H. and Oh H.-M. 2005. Harvesting of Spirulina platensis by cellular flotation and growth stage determination. Lett. Appl. Microbiol. 40: 190-194   DOI   ScienceOn
5 Joo D.S., Cho M.G., Buchholz R. and Lee E.H. 1988. Growth and fatty acid composition with growth conditions for Spirulina platensis. J. Korean Fish. Soc. 31: 409-416
6 Tredici M., Papuzzo T. and Tomaselli L. 1986. Outdoor mass culture of Spirulina maxima in sea-water. Appl. Microbiol. Biotechnol. 24: 47-50
7 Olguin J.E., Galicia S., Mercado G. and Perez T. 2003. Annual productivity of Spirulina (Arthrospira) and nutrient removal in a pig wastewater recycling process under tropical conditions. J. Appl. Phycol. 15: 249-257   DOI   ScienceOn
8 Nakayama T., Watanabe S., Mitsui K., Uchida H. and Inouye I. 1996. The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18S rDNA sequence data. Phycol. Res. 44: 47-55   DOI
9 Vonshak A., Boussiba S., Abeliovich A. and Richmond A. 1983. Production of Spirulina biomass: Maintenance of pure culture outdoors. Biotechnol. Bioeng. 25: 341-349   DOI   ScienceOn
10 Vonshak A. and Guy R. 1992. Photoadaptation, photoinhibition and productivity in the blue-green alga Spirulina platensis grown outdoors. Plant Cell Environ. 15: 613-616   DOI
11 Samuelsson G., Lonneborg A., Gustafsson P. and Oquist G. 1987. The susceptibility of photosynthesis to photoinhibition and the capacity of recovery in high and low light grown cyanobacteria Anacystis nidulans. Plant Physiol. 83: 438-441   DOI   ScienceOn
12 Vonshak A., Chanawongse L., Bunnag, B. and Tanticharoen M. 1996. Light acclimation and photoinhibition in three Spirulina platensis (cyanobacteria) isolates. J. Appl. Phycol. 8: 35-40   DOI
13 Walach M.R., Bazin M. and Pirt J. 1987. Computer control of carbon-nitorgen ratio in Spirulina platensis. Biotechnol. Bioengineer. 29: 520-528   DOI   ScienceOn
14 Shimamatsu H. 2004. Mass production of Spirulina, an edible microalga. Hydrobiologia 512: 39-44   DOI   ScienceOn
15 Fox R.D. 1996. Spirulina production and potential. Edisud, Aixen- Provence, France
16 Kay R.A. 1991. Microalgae as food and supplement. Crit. Rev. Food SCI. Nutr. 30: 555-573   DOI   ScienceOn
17 Walsby A.E. 1994. Gas vesicles. Microbiol. Rev. 58: 94-144
18 Vonshak A. 1997. Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. Taylor & Francis Ltd., London, U.K
19 Vonshak A. and Tomaselli L. 2000. Arthrospira (Spirulina): Systematic and Ecophysiology. In: Whitton B.A. and Potts M. (eds), The Ecology of Cyanobacteria: Their Diversity in Time and Space. Kluwer Academic Publisher, The Netherlands. pp. 505-522
20 Vonshak A. and Richmond A. 1988. Mass production of the blue-green alga Spirulina: an overview. Biomass London 15: 233-247   DOI   ScienceOn
21 Ciferri O. 1983. Spirulina, the edible micro-organism. Microbiol. Rev. 47: 551-578
22 Durand-Chastel H. 1980. Production and use of Spirulina in Mexico. In: Shelef G. and Soeder C.J. (ed), Algae Biomass. Elsevier/NorthHolland Biomedical Press, Amsterdam. pp. 51-64
23 Ohad I., Kyle D.J., Arntzen C.J. 1984. Membrane protein damage and repair removal and replacement of inactivate 32 $\kappa$D polypeptides in chloroplast membranes. J. Cell Biol. 99: 481-485   DOI
24 Vonshak A., Guy R., Poplawsky R. and Ohad I. 1988. Photoinhibition and its recovery in two strains of the cyanobacterium Spirulina platensis. Plant Cell Physiol. 29: 721-726
25 Zarouk C. 1966. Contribution a l'etude d'une cyanophycee. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthese de Spirulina maxima (Setch. Et Gardner) Geitler, Ph. D. thesis, University of Paris, France