• Title/Summary/Keyword: Alcohol Fuel

Search Result 120, Processing Time 0.025 seconds

SNG Production from Wood Biomass with Dual Fluidized-Bed Gasifier (목재 바이오매스를 활용한 이중유동층 가스화기의 SNG 생산)

  • Yoon, Hyungchul;Cho, Sungho;Lee, Dock-jin;Moon, Goyoung;Cho, Soonhaing
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.214-225
    • /
    • 2016
  • Gasification is one of the important contribution to resource recycling by conversion of biomass to a variety of energy sources such as alcohol, SNG etc., and to global warming prevention by reduction of green house gases such as $CO_2$. The aim of this study is to draw the optimal operation condition of dual fluidized-bed gasifier with biomass fuel, to verify SNG production efficiency and to establish the basis for the domestic commercialization of dual fluidized bed gasification. As a result, dual fluidized-bed gasifier has the optimal conditions at $826^{\circ}C$ with steam input 1,334 g/hr, air input 5.56 L/min. The carbon conversion is 81% and SNG production efficiency was $CH_4$ 92%.

Urinary Bladder Cancer Risk Factors: A Lebanese Case-Control Study

  • Kobeissi, Loulou Hassan;Yassine, Ibrahim Adnan;Jabbour, Michel Elias;Moussa, Mohamad Ahmad;Dhaini, Hassan Rida
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3205-3211
    • /
    • 2013
  • Background: Bladder cancer is the second most incident malignancy among Lebanese men. The purpose of this study was to investigate potential risk factors associated with this observed high incidence. Methods: A case-control study (54 cases and 105 hospital-based controls) was conducted in two major hospitals in Beirut. Cases were randomly selected from patients diagnosed in the period of 2002-2008. Controls were conveniently selected from the same settings. Data were collected using interview questionnaire and blood analysis. Exposure data were collected using a structured face-to-face interview questionnaire. Blood samples were collected to determine N-acetyltransferase1 (NAT1) genotype by PCR-RFLP. Analyses revolved around univariate, bivariate and multivariate logistic regression, along with checks for effect modification. Results: The odds of having bladder cancer among smokers was 1.02 times significantly higher in cases vs. controls. The odds of exposure to occupational diesel or fuel combustion fumes were 4.1 times significantly higher in cases vs controls. The odds of prostate-related morbidity were 5.6 times significantly higher in cases vs controls. Cases and controls showed different clustering patterns of NAT1 alleles. No significant differences between cases and controls were found for consumption of alcohol, coffee, tea, or artificial sweeteners. Conclusions: This is the first case-control study investigating bladder cancer risk factors in the Lebanese context. Results confirmed established risk factors in the literature, particularly smoking and occupational exposure to diesel. The herein observed associations should be used to develop appropriate prevention policies and intervention strategies, in order to control this alarming disease in Lebanon.

Long-chain alcohols derived from the microalga Monoraphidium

  • Yang, Xuewei;Dai, Xin;Zhang, Rui;Shao, Cong;Geng, Shu;Chen, Guangyi;Liu, Xianhua;Wang, Guangyi
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2013
  • This study was to investigate the composition and characteristics of long-chained alcohols extracted from the algal strain Monoraphidium 3s35. The production of biomass was optimized using different cultivation methods. Under the aerated growth condition, this strain yielded up to 37.26% extracts of dry weight and $576mgL^{-1}$ biomass. The major compounds of the extracts are mainly long-chained alcohols (89.24%), with carbon chain length ranging from 12 to 20. Interestingly, or the long-chained alcohols, 3-(2-Methoxyethyl)-1-nonanol, 3,7,11,15-Tetramethyl-2-hexadecen-1-ol and oleyl alcohol accounted for 53.68%, 23.45%, and 12.11%, respectively. Because of their amphipathic nature, these long-chained alcohols have been widely used in bioenergy production and cosmetics industry. Furthermore, Monoraphidium 3s35 produced 9.73% of $C_{17}$ and $C_{20}$ alkanes, which can be used as an important supplement for the petrodiesel-like fuel.

PVA/Silica Hybrid Membrane Containing Sulfonic Acid Croup for Direct Methanol Fuel Cells Application (Sulfonic acid group을 갖는 PVA/Silica Hybrid막의 DMFC 응용)

  • Young Moo Lee;Dae Sik Kim;Kwang Ho Shin;Ho Bum Park;Ji Won Rhim
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.101-109
    • /
    • 2003
  • In the present study, crosslinked poly(vinyl alcohol) (PVA) membranes were prepared at various crosslinking agent content using sulfosuccinic acid (SSA) containing sulfonic acid group ($SO_3H)$. To reduce methanol permeability, silica was introduced to the membrane using sol-gel process. The hybrid membranes were studied in relation to proton conductivity and methanol permeability. It was found that both these properties were very dependent on the effect of SSA content as a crosslinking agent and as a donor of hydrophilic $SO_3H)$ group. The proton conductivities of these PVA/SSA/Silica membranes are in the range from $10^{-3}\;to\;10^{-2}$S/cm and the methanol permeabilities are in the range from $10^{-8}\;to\;10^{-7}\;cm^2/sec$.

Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

  • Gustan PARI;Lisna EFIYANTI;Saptadi DARMAWAN;Nur Adi SAPUTRA;Djeni HENDRA;Joseph ADAM;Alfred INKRIWANG;Rachman EFFENDI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.207-221
    • /
    • 2023
  • The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%-30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%-2.62%; ash of 11.61%-13.98%; volatile matter of 27.15%-51.74%; and fixed carbon content of 40.24%-59.46%. The compressive strength of the briquettes is 186-540 kg/cm2. Their calorific value is 5,338-6,120 kcal/kg, combusting at a high speed of 0.15-0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.

Preparations of Universal, Functionalized Long-Chain Alkylthiol Linkers for Self-assembled Monolayers (자기조립단분자막을 위한 보편적이고 기능화된 긴 사슬 알킬티올 연결자의 제조)

  • Yoo, Dong-Jin;Lee, Kyong-Sub;Kim, Ae-Rhan;Nahm, Kee-Suk
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.330-337
    • /
    • 2011
  • In this research, the preparation processes for making a series of $\omega$-mercapto alkylamine 1 and $\omega$-mercapto alkanoic acid 2 useful for studying of the self-assembled monolayer(SAM) are described. The preparation methods of the first goal materials, $\omega$-mercapto alkylamines 1 were carried out as follows: First, $\omega$-phthalimide alkanol 3 was synthesized from commercially available potassium phthalimide derivatives and $\omega$-bromoalkanol in DMF at $80{^{\circ}C}$ via substitution reaction. After refluxing $\omega$-phthalimide alkanol 3 with hydrazine hydrate in ethanol followed by treating with c-HCl, $\omega$-aminoalkanol 4 was obtained in 76-98% yield, accompanied with side-product 5. Bromination of hydroxyl moiety of $\omega$-aminoalkanol 4 using aqueous hydrobromic acid furnished $\omega$-bromoamine 6 in 34-97% yields. Substitution reaction 6 with thiourea in 95% ethanol gave $\omega$-aminoalkanthiuronium 7, which was treated with aqueous strong base and aqueous strong sulfuric acid gave desired products, $\omega$-mercapto alkylamines 1 through overall 5 steps. The second target material, $\omega$-mercapto alkanoic acid 2 was prepared via 2 steps. $\omega$-bromo alkanoic acid was reacted with thiourea to give $\omega$-thiourea alkanoic acid 7 in 69-85%, which was treated with aqueous strong base and strong acid to furnish $\omega$-mercapto alkanoic acid 2 in 50-98%. The fabricated long-chain alkylthiol(LCAT) can be used as linkers to immobilize protein, enzyme and various kinds of biomolecules on the surface of metallic materials(Au, Pt, Ti) by SAM, and can be useful chemical tools for the application study on the surface modification of metallic materials.

A Study on the oxidation characteristics of micro-algal bio diesel derived from Dunaliella tertiolecta LB999 (Dunaliella tertiolecta LB999 유래 바이오디젤의 산화특성 연구)

  • Lee, Don-Min;Lee, Mi-Eun;Ha, Jong-Han;Ryu, Jin-Young;Choi, Chang-Yong;Shim, Sang-Hyuk;Lim, Sang-Min;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Bio diesel has advantages to reduce GHG(Greenhouse Gas) compare with the fossil fuel by using oil comes from plant/animal sources and even waste such as used cook oil. The diversity of energy feeds brings the positive effects to secure the national energy mix. In this circumstance, micro-algae is one of the prospective source, though some technical barriers. We analyzed the bio diesel which was derived from Dunaliella tertiolecta LB999 through the BD100 quality specifications designated by the law. From that result, it is revealed that the oxidation stability is one of the properties to be improved. In order to find the reason for low oxidation stability, we analyzed the oxidation tendency of each FAME components through some methods(EN 14111, EN14112, EN16091). In this study, we could find the higher double bond FAME portion, the more oxidative property(C18:1${\ll}C18:3$) in bio diesel and main unsaturated FAME group is acted as the key component deciding the bio diesel's oxidation stability. It is proved experimentally that C18:3 FAME are oxidized easily under the modified accelerated oxidation test. We also figure out low molecular weight hydrocarbon and FAME were founded as a result of thermal degradation. Some alcohol and aldehydes were also made by FAME oxidation. In conclusion, it is necessary to find the way to improve the micro-algal bio diesel's oxidation stability.

Manufacture of the Hydrophobic HY-type Zeolite-honeycomb and Its Adsorption/Desorption Characteristics for the Benzene, o-xylene, and MEK (소수성 HY-형 제올라이트제 하니컴의 제조 및 그 하니컴의 벤젠, o-xylene, MEK에 대한 흡.탈착특성)

  • Mo, Se-Young;Jeon, Dong-Hwan;Kwon, Ki-Seung;Sohn, Jong-Ryeul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.1
    • /
    • pp.84-96
    • /
    • 2007
  • We performed the experiments to manufacture the hydrophobic $200cells/in^2$-zeolite honeycomb using HY-type zeolite of Si/Al ratio of 80 for separating and removing the VOCs emitted from small and medium size-plants by adsorption and to determine the drying method for the honeycomb at $105^{\circ}C$ without cracking, then measured performances of the honeycomb to adsorb the benzene, o-xylene, and MEK and to desorb the benzene and MEK saturated on the honeycomb by the nitrogen gas as the desorption gas. As a results, the good honeycomb was formed and the honeycomb was not cracked when the mixing ratio of the zeolite to bentonite to methyl cellulose to polyvinyl alcohol to glycerine to water is 100 : 8.73 : 2.18 : 4.19 : 1.38 : 126 and dried the honeycomb at $105^{\circ}C$ for 24 hours in the drying oven. The shape of the dried honeycomb was not changed after calcination, and the compressive strengths of the honeycomb after drying and calcination were 6.7 and $0.69kg/cm^2$, respectively. The adsorption efficiencies of the honeycomb for benzene, o-xylene, and MEK were $92{\sim}96%$ at the room temperature. The desorption efficiency at $180^{\circ}C$ was higher than that at $150^{\circ}C\;by\;1.5{\sim}13.8%$ depending on the flow rate of the nitrogen gas, and it was found that desorption efficiency is higher than 85% at $180^{\circ}C$ and 1.0L/min of the nitrogen gas. At $180^{\circ}C$ and 0.2 L/min, the concentration of the benzene and MEK in the used desorption gas are higher than 40,000 and 50,000ppm, respectively, so it be used as the fuel for preheating the desorption gas fed into the column in desorption cycle.

Fabrication of Sm0.5Sr0.5CoO3 cathode films for intermediate temperature SOFCs by electrostatic spray deposition (정전분무증착법에 의한 중온형 고체산화물 연료전지를 위한 Sm0.5Sr0.5CoO3 양극막의 제조)

  • Park, In-Yu;Im, Jong-Mo;Jung, Yeong-Geul;Shin, Dong-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.2
    • /
    • pp.69-73
    • /
    • 2010
  • The microstructural change of the $Sm_{0.5}Sr_{0.5}CoO_3$ (SSC) electrode for a cathode material of solid oxdie fuel cells (SOFCs) deposited by the electrostatic spray deposition (ESD) technique was characterized. Samarium chloride hexahydrate $(SmCl_3{\cdot}6H_2O)$, strontium chloride hexahydrate $(SrCl_2{\cdot}gH_2O)$, cobalt nitrate hexahydrate $(Co(No_3)_2{\cdot}6H_2O)$ as starting materials and methyl alcohol as solvent were used to make precursor solution. The suitable porous SSC films for a cathode of SOFCs were deposited on Si substrate and it is observed that the microstructure was strongly dependent on processing parameters such as deposition time, substrate temperature, and applied voltage. Scanning Electron Microscope (SEM) and X-ray Diffractometer (XRD) measurement were used to investigate the microstructure and crystallinity of the SSC films. The ESD technique is shown to be an efficient method in which the SOFCs' cathode film can be fabricated with the desired phases and microstructure.

Upgrading of Quercus mongollica bio-oil by esterification (에스터화 반응을 이용한 신갈나무 바이오오일 품질 개선)

  • Chea, Kwang-Seok;Lee, Hyung-Won;Jeong, Han-Seob;Lee, Jae-Jung;Ju, Young-Min;Lee, Soo-Min
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.975-984
    • /
    • 2018
  • Fast pyrolysis bio-oil has unfavorable properties that restrict its use in many applications. Among the main issues are high acidity, instability, and water and oxygen content, which give rise to corrosiveness, polymerization during storage, and a low heating value. Esterification and azeotropic water removal can improve all of these properties. A 500 g of Quercus mongollica which grounded 0.8~1.4 mm was processed into bio-oil via fast pyrolysis for 2 seconds at $550^{\circ}C$. The esterification consists of treating pyrolysis oil with a high boiling alcohol like n-butanol at $70^{\circ}C$ under reduced pressure (100 hPa). All products are analyzed for water mass fraction, viscosity, higher heating value, pH, FT-IR and GC/MS. The water mass fraction can be reduced by 91.4 % (from 31.5 % to below 2.7 %), the viscosity by 65.8 % (from 36.5 to 12.5 cP) and the higher heating value can be increased by 96.8 % (from 3,918 to 7,712 kcal/kg), the pH by 1.3 (from 2.7 to 4.0). FT-IR and GC/MS analysis indicated that labile acids, aldehydes, ketones and lower alcohols were transformed to stable target products. Using this approach, the water content of the pyrolysis oil is reduced significantly. These improvements should allow the utilization of upgraded pyrolysis liquids in standard boilers and as fuel in CHP (Combined heat and power) plants.