DOI QR코드

DOI QR Code

Preparations of Universal, Functionalized Long-Chain Alkylthiol Linkers for Self-assembled Monolayers

자기조립단분자막을 위한 보편적이고 기능화된 긴 사슬 알킬티올 연결자의 제조

  • Yoo, Dong-Jin (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School) ;
  • Lee, Kyong-Sub (EstechPharma Co., Ltd.) ;
  • Kim, Ae-Rhan (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School) ;
  • Nahm, Kee-Suk (Department of Hydrogen and Fuel Cells Engineering, Specialized Graduate School)
  • 유동진 (전북대학교 수소.연료전지공학과 특성화대학원) ;
  • 이경섭 ((주)에스텍파마 부설연구소) ;
  • 김애란 (전북대학교 수소.연료전지공학과 특성화대학원) ;
  • 남기석 (전북대학교 수소.연료전지공학과 특성화대학원)
  • Published : 2011.06.30

Abstract

In this research, the preparation processes for making a series of $\omega$-mercapto alkylamine 1 and $\omega$-mercapto alkanoic acid 2 useful for studying of the self-assembled monolayer(SAM) are described. The preparation methods of the first goal materials, $\omega$-mercapto alkylamines 1 were carried out as follows: First, $\omega$-phthalimide alkanol 3 was synthesized from commercially available potassium phthalimide derivatives and $\omega$-bromoalkanol in DMF at $80{^{\circ}C}$ via substitution reaction. After refluxing $\omega$-phthalimide alkanol 3 with hydrazine hydrate in ethanol followed by treating with c-HCl, $\omega$-aminoalkanol 4 was obtained in 76-98% yield, accompanied with side-product 5. Bromination of hydroxyl moiety of $\omega$-aminoalkanol 4 using aqueous hydrobromic acid furnished $\omega$-bromoamine 6 in 34-97% yields. Substitution reaction 6 with thiourea in 95% ethanol gave $\omega$-aminoalkanthiuronium 7, which was treated with aqueous strong base and aqueous strong sulfuric acid gave desired products, $\omega$-mercapto alkylamines 1 through overall 5 steps. The second target material, $\omega$-mercapto alkanoic acid 2 was prepared via 2 steps. $\omega$-bromo alkanoic acid was reacted with thiourea to give $\omega$-thiourea alkanoic acid 7 in 69-85%, which was treated with aqueous strong base and strong acid to furnish $\omega$-mercapto alkanoic acid 2 in 50-98%. The fabricated long-chain alkylthiol(LCAT) can be used as linkers to immobilize protein, enzyme and various kinds of biomolecules on the surface of metallic materials(Au, Pt, Ti) by SAM, and can be useful chemical tools for the application study on the surface modification of metallic materials.

본 연구에서는 자기조립단분자막(SAM)의 연구에 유용한 일련의 $\omega$-mercapto alkyl amine 1 및 $\omega$-mercapto alkanoic acid 2를 만드는 제조공정을 서술하였다. 먼저 첫 번째 목표물질인 $\omega$-mercapto alkyl amine 1의 제조방법은 다음과 같다: 먼저 시중에서 시판되는 potassium phthalimide와 $\omega$-bromo alcohol을 $80{^{\circ}C}$, DMF 용매에서 치환반응으로 화합물 3을 합성하였다. 아민기와 알코올기를 포함하는 화합물 4을 합성하기 위하여 먼저 화합물 3를 hydrazine hydrate로 환류시킨 후, 이어서 c-HCl로 처리하여 부반응물 5를 수반하여 생성물 4를 76-98% 수율로 만들었다. $\omega$-aminoakanol 4의 hydroxyl기를 HBr로 브로민화반응을 하여 $\omega$-bromoamine 화합물 6을 34-97% 수율로 만들었다. 티올기를 도입하기 위하여 화합물 6을 95% 에탄올 속에서 thiourea와 치환 반응하여 $\omega$-aminoalkanthiuronium 7을 만든 다음, 이 화합물을 센 염기(KOH)와 센 산으로 처리하여 목표화합물, $\omega$-mercapto alkylamines 1을 총 5단계를 걸쳐서 제조하였다. 덧붙여 두 번째 목표물질인 $\omega$-mercapto alkanoic acid 2는 다음과 같이 2단계를 통하여 제조하였다: $\omega$-bromo alkanoic acid를 95% 에탄올 속에서 thiourea로 처리하여 화합물 7을 만든 다음, 센 염기(KOH)를 처리하여 thiuronium bromide 를 제거한 후, 다시 센 산(HCl) 수용액으로 처리하여 두 번째 목표화합물 $\omega$-mercapto alkanoic acid 2을 얻었다. 제조한 긴 사슬 알킬티올 1과 2 유도체들은 금속(Au, Pt, Ti)에 자기조립단분자 막을 형성함으로써 단백질, 효소 및 다양한 생체분자를 고정하는 연결자로 사용될 수 있으며, 그 밖에 금속의 표면개질을 이용하여 다양한 응용 연구를 위한 화학 도구로 사용될 수 있다.

Keywords

References

  1. Fabianowski, W., Coyle, L. C., Weber, B. A., Granata, R. D., Castner, D. G., Sadownik, A. and Regen S. L., "Spontaneous Assembly of Phosphatidylcholine Monolayers via Chmisorption Onto Gold," Langmuir, 5, 35-41(1989). https://doi.org/10.1021/la00085a008
  2. Swalen, J. D., Allara, D. L., Andrade, J. D., Chandross, E. A., Garoff, S., Israelachvili, J., McCarthy, T. J., Murray, R., Pease, R. F., Rabolf, J. F., Wynne, K. J. and Yu, H., "Molecular Monolayers and Films," Langmuir, 3, 932-950(1987). https://doi.org/10.1021/la00078a011
  3. Nuzzo, R. G. and Allara, D. L., "Adsorption of Bifunctional Organic Disulfides on Gold Surfaces," J. Am. Chem. Soc., 105, 4481-4483(1983). https://doi.org/10.1021/ja00351a063
  4. Schierbaum, K. D., Weiss, T., Thoden van Vekzen, E. U., Engbersen, J. F. J., Reinhoudt, D. N. and Gopel, W., "Molecular Recognition by Self-assembled Monolayers of Cavitand Receptors," Science, 256, 1413-1415(1994).
  5. Thoden van Velden, E. U., Engbersen, J. F. J. and Reinhoudt, D. N., "Self-assembled Monolayers of Receptor Adsorbates on Gold: Preparation and Characterization," J. Am. Chem. Soc., 116, 3597-3598(1994). https://doi.org/10.1021/ja00087a055
  6. Kim, T., Ye, Q., Sun, L., Chan, K. C. and Crooks, R. M., "Polymeric Self-assembled Monolayers. 5. Synthesis and Characterization of $\omega$-functionalized, Self-assembled Diacetylenic and Polydiacetylenic Monolayers," Langmuir, 12, 6065-6073(1996). https://doi.org/10.1021/la960810h
  7. Kim, U. R., "Applications of Self-assembled Monolayers(SAMs) for Biosensor," Korean J. Biotechnol. Bioeng., 17(5), 412-428(2002).
  8. Dermody, D. L., Crooks, R. M. and Kim, T., "Interactions Between Organized, Surface-confined Monolayers and Vapor-phase Probe Molecules. 11. Synthesis, Characterization, and Chemical Sensitivity of Self-assembled Polydiacetylene/calix[N]arene Bilayers," J. Am. Chem. Soc., 118, 11912-11917(1996). https://doi.org/10.1021/ja961302x
  9. Schonherr, H., Vancso, G. J., Huisman, B.-H., van Veggel, F. C. J. M. and Reinhoudt, D. N., "An Atomic Force Microscopy Study of Self-assembled Monolayers of calix[4]resorcinarene Adsorbates on Au(111)," Langmuir, 13, 1567-1570(1997). https://doi.org/10.1021/la961084l
  10. Dermody, D. L., Lee, Y., Kim, T. and Crooks, R. M., "Synthesis, Characterization, and Chemical Sensitivity of Self-assembled Bilayers Composed of Polydiacetylenes and Calix[4]arenes Chemically Modified on the Upper Rim," Langmuir, 15, 8435-8440(1999). https://doi.org/10.1021/la981080b
  11. Seo, K., Jeon, I. C. and Yoo, D. J., "Electrochemical Characteristics of Ferrocenecarboxylate-coupled aminoundecylthiol selfassembled monolayers," Langmuir, 20, 4147-4154(2004). https://doi.org/10.1021/la0208068
  12. Yao, H., Kojima, H., Sato, S. and Kimura, K., "Interparticle Spacing Control in the Superlattices of Carboxylic Acid-capped Gold Nanoparticles by Hydrogen-bonding Mediation," Langmuir, 20, 10317-10323(2004). https://doi.org/10.1021/la0481501
  13. Kazemekaite, M., Bulovas, A., Talaikyte, Z., Railaite, V. and Niaura, G., Tetrahedron Lett., 49, 6212-6216(2008). https://doi.org/10.1016/j.tetlet.2008.08.039
  14. Armerigo, W. L. F. and Perrin, D. D. Purification of Laboratory Chemicals, 4th Ed.; Oxford: Butterworth-Heinemann, 1996.
  15. Smith, L. I. and Emerson, O. H., "tert-Butylphthalimide", Organic Syntheses, 3, 151-153(1955).
  16. Cortest, F., "$\beta$-Bromoethylamine Hydrobromide," Organic Syntheses, 2, 91-93(1943).
  17. Miller, G., Cuendet, P. and Gratzel, M., "Adsorbed $\omega$-hydroxy Thiol Monolayers on Gold Electrodes: Evidence for Electron Tunneling to Redox Species in Solution," J. Phys. Chem. 95, 877-886 (1991). https://doi.org/10.1021/j100155a072
  18. John Speziale, A., "Ethanedithiol," Organic Syntheses, 4, 401-403 (1963).