DOI QR코드

DOI QR Code

Initial Ignition Time and Calorific Value Enhancement of Briquette with Added Pine Resin

  • Gustan PARI (Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Cibinong Science Center) ;
  • Lisna EFIYANTI (Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Cibinong Science Center) ;
  • Saptadi DARMAWAN (Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Cibinong Science Center) ;
  • Nur Adi SAPUTRA (Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Cibinong Science Center) ;
  • Djeni HENDRA (Research Center for Biomass and Bioproduct, National Research and Innovation Agency, Cibinong Science Center) ;
  • Joseph ADAM (Nui Hia Prima Co., Ltd.) ;
  • Alfred INKRIWANG (Nui Hia Prima Co., Ltd.) ;
  • Rachman EFFENDI (Research Center for Ecology and Ethnobiology, National Research and Innovation Agency, Cibinong Science Center)
  • Received : 2023.02.02
  • Accepted : 2023.04.27
  • Published : 2023.05.25

Abstract

The increasing demand for clean energy requires considerable effort to find alternative energy sources, such as briquettes. This research aims to develop a charcoal briquette with added pine resin (API) that has excellent combustion speed and distinctive aroma. Briquettes are composed of charcoal, pine resin (concentration: 0%-30%), and starch (up to 7%). They are produced in several stages, including coconut shell pyrolysis in conventional combustion, to obtain charcoal for the briquette precursor. Briquette compaction is conducted by mixing and densifying the charcoal, pine resin, and starch using a hydraulic press for 3 min. The hydraulic press has a total surface area and diameter of 57.7 cm2 and 3.5 cm, respectively. The briquettes are dried at different temperatures, reaching 70℃ for 24 h. The study results show that the briquettes have a thickness and diameter of up to 2 and 3.5 cm, respectively; moisture of 2.18%-2.62%; ash of 11.61%-13.98%; volatile matter of 27.15%-51.74%; and fixed carbon content of 40.24%-59.46%. The compressive strength of the briquettes is 186-540 kg/cm2. Their calorific value is 5,338-6,120 kcal/kg, combusting at a high speed of 0.15-0.40 s. The methoxy naphthalene, phenol, benzopyrrole, and lauryl alcohol; ocimene, valencene, and cembrene are found in the API. The API briquette has several chemical compounds, such as musk ambrette, ocimene, sabinene, limonene, 1-(p-cumenyl) adamantane, butane, and propanal, which improve aroma, drug application, and fuel production. Accordingly, API briquettes have considerable potential as an alternative energy source and a health improvement product.

Keywords

Acknowledgement

The authors express their gratitude to the National Research and Innovation Agency (BRIN), Center for Standardization of Sustainable Forest Management Instrument, Ministry of Environment and Forestry, Indonesia, for providing facility support and the Ministry of Finance for funding this research (Indonesia Endowment Fund for Education scheme, LPDP-RISPRO KOMERSIAL).

References

  1. Ajimotokan, H.A., Ehindero, A.O., Ajao, K.S., Adeleke, A.A., Ikubanni, P.P., Shuaib-Babata, Y.L. 2019. Combustion characteristics of fuel briquettes made from charcoal particles and sawdust agglomerates. Scientific African 6: e00202.
  2. Ameh, P.O. 2015. A comparative study of the inhibitory effect of gum exudates from Khaya senegalensis and Albizia ferruginea on the corrosion of mild steel in hydrochloric acid medium. International Journal of Metals 2015: 824873.
  3. Aransiola, E.F., Oyewusi, T.F., Osunbitan, J.A., Ogunjimi, L.A.O. 2019. Effect of binder type, binder concentration and compacting pressure on some physical properties of carbonized corncob briquette. Energy Reports 5: 909-918.
  4. Bhagat, M., Bandral, A., Bashir, M., Bindu, K. 2018. GC-MS analysis of essential oil of Pinus roxburghii Sarg. (Chir pine) needles and evaluation of antibacterial and anti-proliferative properties. Indian Journal of Natural Products and Resources 9(1): 34-38.
  5. Chen, L.W., Chung, H.L., Wang, C.C., Su, J.H., Chen, Y.J., Lee, C.J. 2020. Anti-acne effects of cembrene diterpenoids from the cultured soft coral Sinularia flexibilis. Marine Drugs 18(10): 487.
  6. Coleti, J.L., Manfredi, G.V.P., Vinhal, J.T., Junca, E., Espinosa, D.C.R., Tenorio, J.A.S. 2020. Kinetic investigation of self-reduction basic oxygen furnace dust briquettes using charcoals from different biomass. Journal of Materials Research and Technology 9(6): 13282-13293. https://doi.org/10.1016/j.jmrt.2020.09.061
  7. Efiyanti, L., Darmawan, S., Saputra, N.A., Wibisono, H.S., Hendra, D., Pari, G. 2022. Quality evaluation of coconut shell activated carbon and its application as precursor for citronellal-scented aromatic briquette. Rasayan Journal of Chemistry 15(3): 1608-1618. https://doi.org/10.31788/RJC.2022.1536799
  8. Guo, Z., Wu, J., Zhang, Y., Wang, F., Guo, Y., Chen, K., Liu, H. 2020. Characteristics of biomass charcoal briquettes and pollutant emission reduction for sulfur and nitrogen during combustion. Fuel 272: 117632.
  9. Hadiyane, A., Dungani, R., Karliati, T., Rumidatul, A. 2019. Effects of vinegar waste logging based stimulant on production of resin from Pinus merkusii jungh. Et De Vriese. Rasayan Journal of Chemistry 12(4): 2227-2234. https://doi.org/10.31788/RJC.2019.1245199
  10. Hakizimana, J.D.K., Kim, H.T. 2016. Peat briquette as an alternative to cooking fuel: A techno-economic viability assessment in Rwanda. Energy 102: 453-464. https://doi.org/10.1016/j.energy.2016.02.073
  11. Homchat, K., Ramphueiphad, S. 2022. The continuous carbonisation of rice husk on the gasifier for high yield charcoal production. Results in Engineering 15: 100495.
  12. Hwang, J.W., Oh, S.W. 2021. Bending strength of board manufactured from sawdust, rice husk and charcoal. Journal of the Korean Wood Science and Technology 49(4): 315-327. https://doi.org/10.5658/WOOD.2021.49.4.315
  13. Jelonek, Z., Drobniak, A., Mastalerz, M., Jelonek, I. 2020. Environmental implications of the quality of charcoal briquettes and lump charcoal used for grilling. Science of the Total Environment 747: 141267.
  14. Jeoung, T.Y., Yang, S.M., Kang, S.G. 2020. Study on fuel specificity and harmful air pollutants factor of agglomerated wood charcoal. Journal of the Korean Wood Science and Technology 48(2): 253-266. https://doi.org/10.5658/WOOD.2020.48.2.253
  15. Ju, Y.M., Jeong, H., Chea, K.S., Ahn, B.J., Lee, S.M. 2020a. Evaluation of the amount of gas generated through combustion of wood charcoal and agglomerated charcoal depending on air ventilation. Journal of the Korean Wood Science and Technology 48(6): 847-860. https://doi.org/10.5658/WOOD.2020.48.6.847
  16. Ju, Y.M., Lee, H.W., Kim, A., Jeong, H., Chea, K.S., Lee, J., Ahn, B.J., Lee, S.M. 2020b. Characteristics of carbonized biomass produced in a manufacturing process of wood charcoal briquettes using an open hearth kiln. Journal of the Korean Wood Science and Technology 48(2): 181-195. https://doi.org/10.5658/WOOD.2020.48.2.181
  17. Kim, M.J., Kim, J.Y., Kim, B.R. 2020. Mechanical characteristics of Korean red pines according to provinces (Goseong, Hongcheon and Bonghwa-gun). Journal of the Korean Wood Science and Technology 48(5): 666-675. https://doi.org/10.5658/WOOD.2020.48.5.666
  18. Kongprasert, N., Wangphanich, P., Jutilarptavorn, A. 2019. Charcoal briquettes from Madan wood waste as an alternative energy in Thailand. Procedia Manufacturing 30: 128-135. https://doi.org/10.1016/j.promfg.2019.02.019
  19. Kumar, J.A., Kumar, K.V., Petchimuthu, M., Iyahraja, S., Kumar, D.V. 2021. Comparative analysis of briquettes obtained from biomass and charcoal. Materials Today: Proceedings 45(2): 857-861. https://doi.org/10.1016/j.matpr.2020.02.918
  20. Kwon, G.J., Kim, A.R., Lee, H.S., Lee, S.H., Hidayat, W., Febrianto, F., Kim, N.H. 2018. Characteristics of white charcoal produced from the charcoal kiln for thermotherapy. Journal of the Korean Wood Science and Technology 46(5): 527-540. https://doi.org/10.5658/WOOD.2018.46.5.527
  21. Mencarelli, A., Cavalli, R., Greco, R. 2022. Variability on the energy properties of charcoal and charcoal briquettes for barbecue. Heliyon 8(8): e10052.
  22. Nagarajan, J., Prakash, L. 2021. Preparation and characterization of biomass briquettes using sugarcane bagasse, corncob and rice husk. Materials Today: Proceedings 47(14): 4194-4198. https://doi.org/10.1016/j.matpr.2021.04.457
  23. Njenga, M., Karanja, N., Karlsson, H., Jamnadass, R., Iiyama, M., Kithinji, J., Sundberg, C. 2014. Additional cooking fuel supply and reduced global warming potential from recycling charcoal dust into charcoal briquette in Kenya. Journal of Cleaner Production 81: 81-88. https://doi.org/10.1016/j.jclepro.2014.06.002
  24. Nyakuma, B.B., Johari, A., Ahmad, A., Abdullah, T.A.T. 2014. Comparative analysis of the calorific fuel properties of empty fruit bunch fiber and briquette. Energy Procedia 52: 466-473. https://doi.org/10.1016/j.egypro.2014.07.099
  25. Osei Bonsu, B., Takase, M., Mantey, J. 2020. Preparation of charcoal briquette from palm kernel shells: Case study in Ghana. Heliyon 6(10): e05266.
  26. Otieno, A.O., Home, P.G., Raude, J.M., Murunga, S.I., Gachanja, A. 2022. Heating and emission characteristics from combustion of charcoal and co-combustion of charcoal with faecal char-sawdust char briquettes in a ceramic cook stove. Heliyon 8(8): e10272.
  27. Phonphuak, N., Thiansem, S. 2012. Using charcoal to increase properties and durability of fired test briquettes. Construction and Building Materials 29: 612-618. https://doi.org/10.1016/j.conbuildmat.2011.11.018
  28. Rahman, N.A., Ajiza, M., Anggorowati, D.A., Rastini, F.E.K., Mustiadi, L. 2022. Clove leaf distillation using briquette fuel with starch and molasses as a binder. Materials Today: Proceedings 63: S293-S296. https://doi.org/10.1016/j.matpr.2022.03.142
  29. Rahmawati, S.S., Abram, P.H., Afadil, Parwati, N.G.A.M., Anggraini. 2022. Characteristics of charcoal briquettes from kepok banana peel waste (Musa paradisiaca F.) as alternative fuel. RASĀYAN Journal of Chemistry 15(1): 108-115.
  30. Rousset, P., Caldeira-pires, A., Sablowski, A., Rodrigues, T. 2011. LCA of eucalyptus wood charcoal briquettes. Journal of Cleaner Production 19(14): 1647-1653. https://doi.org/10.1016/j.jclepro.2011.05.015
  31. Shao, L., Hou, C., Geng, C., Liu, J., Hu, Y., Wang, J., Jones, T., Zhao, C., BeruBe, K. 2016. The oxidative potential of PM10 from coal, briquettes and wood charcoal burnt in an experimental domestic stove. Atmospheric Environment 127: 372-381. https://doi.org/10.1016/j.atmosenv.2015.12.007
  32. Sukarno, A., Zairina, A., Quarta, Y., Kurniasari, R. 2020. Yield and components of pine (Pinus merkusii) turpentine among age class differences tapping by borehole method. Indonesian Journal of Environment and Sustainable Development 11(1): 44-48.
  33. Sun, J., Shen, Z., Zhang, Y., Zhang, Q., Wang, F., Wang, T., Chang, X., Lei, Y., Xu, H., Cao, J., Zhang, N., Liu, S., Li, X. 2019. Effects of biomass briquetting and carbonization on PM2.5 emission from residential burning in Guanzhong plain, China. Fuel 244: 379-387. https://doi.org/10.1016/j.fuel.2019.02.031
  34. Teixeira, S.R., Pena, A.F.V., Miguel, A.G. 2010. Briquetting of charcoal from sugar-cane bagasse fly ash (scbfa) as an alternative fuel. Waste Management 30(5): 804-807. https://doi.org/10.1016/j.wasman.2010.01.018
  35. Tumutegyereize, P., Mugenyi, R., Ketlogetswe, C., Gandure, J. 2016. A comparative performance analysis of carbonized briquettes and charcoal fuels in Kampala-urban, Uganda. Energy for Sustainable Development 31: 91-96. https://doi.org/10.1016/j.esd.2016.01.001
  36. Wu, S., Zhang, S., Wang, C., Mu, C., Huang, X. 2018. High-strength charcoal briquette preparation from hydrothermal pretreated biomass wastes. Fuel Processing Technology 171: 293-300. https://doi.org/10.1016/j.fuproc.2017.11.025
  37. Zhang, Y.H., Huang, Y.X., Ma, H.X., Yu, W.J., Qi, Y. 2018. Effect of different pressing processes and density on dimensional stability and mechanical properties of bamboo fiber-based composites. Journal of the Korean Wood Science and Technology 46(4): 355-361. https://doi.org/10.5658/WOOD.2018.46.4.355