• Title/Summary/Keyword: Ala

Search Result 870, Processing Time 0.046 seconds

Attenuation of Lipopolysaccharide-induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid Phosphate in RAW 264.7 Macrophages (RAW 264.7 대식세포에서 lipopolysaccharide 자극에 의한 염증성 및 산화적 스트레스에 미치는 5-aminolevulinic acid phosphate의 영향)

  • Ji, Seon Yeong;Kim, Min Yeong;Hwangbo, Hyun;Lee, Hyesook;Hong, Su Hyun;Cha, Hee-Jae;Kim, Heui-Soo;Kim, Suhkmann;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.818-826
    • /
    • 2021
  • 5-Aminolevulinic acid phosphate (5-ALA-p) is a substance obtained by eluting 5-ALA (a natural delta amino acid) with aqueous ammonia, adding phosphoric acid to the eluate, and then adding acetone to confer properties suitable for use in photodynamic therapy applications. However, its pharmacological efficacy, including potential mechanisms of antioxidant and anti-inflammatory reactions, remains unclear. This study aimed to investigate the effects of 5-ALA-p on oxidative and inflammatory stresses in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Our data showed that 5-ALA-p significantly inhibited excessive phagocytic activity via LPS and attenuated oxidative stress in LPS-treated RAW 264.7 cells. Furthermore, 5-ALA-p improved mitochondrial biogenesis reduced by LPS, suggesting that 5-ALA-p restores mitochondrial damage caused by LPS. Additionally, 5-ALA-p significantly suppressed the release of nitric oxide (NO) and pro-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin (IL)-1β, and IL-6, which are associated with the inhibition of inducible NO synthase and respective cytokine expression. Furthermore, 5-ALA-p reduced the nuclear translocation of nuclear factor-kappa B (NF-κB) and inhibited phosphorylation of mitogen-activated protein kinases (MAPKs), indicating that the anti-inflammatory effect of 5-ALA-p is mediated through the suppression of NF-κB and MAPK signaling pathways. Based on these results, 5-ALA-p may serve as a potential candidate to reduce inflammation and oxidative stress.

Functions of a-Tropomyosin Are Mainly Dependent upon the Local Structures of the Amino Terminus (a-Tropomyosin의 아미노 말단 구조가 기능에 미치는 영향)

  • Cho, Young-Joon
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.770-777
    • /
    • 2004
  • It has been previously reported that unacetylated a-tropomyosin(TM) produced in E. coli failed to bind to actin while acetylated muscle TM and Ala-Ser dipeptide fusion TM (AS-TM) bound well to actin. In order to determine the structural requirement of the amino terminus for high actin affinity, a recombinant tropomyosin (Ala-TM) that a single Ala residue was added to the amino terminus of Ala-TM was constructed, overexpressed, and purified from E. coli. Actin affinity of Ala-TM was 2.3$\times$$10^{6}$$M^{-1}$, whereas that of unacetylated TM was considerably lower than 0.1$\times$$10^{-6}$$M^{-1}$ indicating that addition of a single Ala residue to the amino terminus drastically increased, at least twenty times, actin affinity of TM. Ala-TM, however, bound to actin about three times weaker than acetylated TM and AS- TM, implying that the addition of an Ala residue was insufficient for complete restoration of high actin affinity. While Ala-TM, AS-TM, and muscle TM showed inhibition and activation of actomyosin Sl ATPase activity depending on myosin Sl concentration, the degree of inhibition and activation was different from each other. AS-TM exhibited the greatest inhibition of the ATPase at low Sl concentration, whereas the greatest activation of the ATPase was observed with muscle TM. These results, together with previous findings, strongly suggested that local structure of the amino terminus is the crucial functional determinant of TM.

Study of metabolite production conditions by using the resting cells of Rhodospirillum rubrum N-1 (Rhodospirillum rubrum N-1의 휴지균체를 이용한 균체 대사산물의 생산 조건 연구)

  • 최경민;양재경
    • Journal of environmental and Sanitary engineering
    • /
    • v.14 no.3
    • /
    • pp.107-115
    • /
    • 1999
  • The effectiveness of resting cells of a photosynthetic bacterium, Rhodospirillum rubrum N-1, was investigated on the production of extracellular ${\delta}-aminolevulinic$ acid(ALA). The ALA generating system required 3hr-incubation in the presence of 10mg of resting cells per ml to obtain the maximal yield of extracellular ALA. and also, under this condition the effect of ALA inducers, i.e., 30mM levulinic acid (LA) and L-glutamic acid($C_5$ pathway precursor) was relatively higher than that of produced extracellular ALA($83{\mu}M$). The volume of system and proper cell density appeared to be important factors for the effective production of extracellular ALA.

  • PDF

PCA를 이용한 유전자 재조합 대장균의 ALA 생산공정의 해석

  • Gang, Tae-Hyeong;Jeong, Sang-Yun;Im, Yong-Sik;Kim, Chun-Gwang;Jeong, Sang-Uk;Lee, Jong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.157-160
    • /
    • 2003
  • ALA is an intermediate in the tetrapyrrole biosynthesis pathway and has extensive applications as a biodegradable herbicide and insecticide as well as medical applications including photodynamic therapy of cancers. For the development of mass production process of ALA it is necessary to on-line monitor some metabolites such as glycine, succinate, LA and ALA. In this study, medium compositions and fermentation conditions were investigated for enhancement of ALA production by recombinant E. coli. A 2-dimensional fluorescence sensor was employed to monitor the bioprocess of ALA production. The monitored data is analyzed using principal component analysis, a powerful tool for multivariate statistical analysis.

  • PDF

An Experimental Study on the Mixing and Mechanical Properties of Artificial Lightweight Aggregate(ALA) Concrete (인공경량골재 콘크리트의 배합과 역학적 성상에 관한 실험적 연구)

  • 김화중;김태섭;전명훈;안상건
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.99-104
    • /
    • 1991
  • It is necessary to generalize the use for structural ALA Concrete in our country, as increasing in the need for the development of ALA and the use of ALA Concrete which is related with the diminution of the self load and foundation section of structure responding to the realistic requirement against the decrease of natural aggregate and the high-rising and large-sizing of structures. This little study, therefore intended to help in the mixing design of concrete by considering the fundamental properties of ALA Concrete used with expanded clay, which is considered by acopting the experimental factors such as unit cement content, water cement ratio and the rate of fine aggregate. By considering the results of this experiment, it has difficulty in getting expected slump with the unit water content of normal concrete because of the large absorption of lightweight aggregate, and because the weight of unit volume and specific gravity ALA Concrete are small it appears that the strength and Elastic Modulus of that are small too and that it is more ductile than normal concrete.

  • PDF

Optimization of an Intact Cell System of Rhodocyclus gelatinosus KUP-74 for ${\delta}-Aminolevulinic$ Acid Production

  • Lim, Wang-Jin;Choi, Kyung-Min;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.3 no.4
    • /
    • pp.244-251
    • /
    • 1993
  • A novel system has been developed to produce ${\delta}-aminolevulinic$ acid (ALA) using the intact cells of late logarithmic phase of Rhodocyclus gelatinosus KUP-74. The system was shown optimum yield of extracellular ALA under a condition of anaerobic light irradiation (4 Klux) at $30^{\circ}C$ with no variation in cell mass. The rate of extracellular ALA formation was stimulated by low doses of either $C_4\;or\;C_5$ ALA biosynthetic precursors, where 5 mM ($C_4) and 3 mM ($C_5) of each precursors were appeared to generate the maximum rates of 3.3 and 4.0 nmoles of ALA per 0.35 mg cells per hr, respectively. Half-life of the system was 10 hr in a sense of an ability of portage transport of L-glutamate, and sequential dose of this compound was resulted in promising recovery of the ALA.

  • PDF

PPAR-Gamma Pro12Ala Polymorphism and Gastric Cancer Risk in a Turkish Population

  • Canbay, Emel;Kurnaz, Ozlem;Canbay, Bahar;Bugra, Dursun;Cakmakoglu, Bedia;Bulut, Turker;Yamaner, Sumer;Sokucu, Necmettin;Buyukuncu, Yilmaz;Yilmaz-Aydogan, Hulya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5875-5878
    • /
    • 2012
  • Background: Peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) is a ligand dependent transcription factor involved in various processes, including carcinogenesis. We aimed to investigate any possible association of the $PPAR{\gamma}$ Pro12Ala (rs1801282) polymorphism with risk of developing gastric cancer (GC). Patients and Methods: A hospital based case control study was designed covering 50 patients with GC and 120 healthy controls. The frequencies of $PPAR{\gamma}$ Pro12Ala (rs1801282) were determined using a polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. Results: The Ala12 allele of the $PPAR{\gamma}$ Pro12Ala G gene was associated with a 1.95 fold increased risk of GC development (p: 0.022; 95% CI: 1.58-2.40). Subgroup analyses showed that the same allele was also associated with metastasis (p: 0.000; OR:4.09; 95%CI:2.273-7.368) and differentiation (p: 0.004; OR:1.95; 95%CI:1.335-2.875) in patients with GC. Conclusion: This study suggests that the $PPAR{\gamma}$ Pro12Ala G (Ala12) allele might be associated with development, differentiation and metastatic process of GC in the Turkish population. Further studies conducted in larger study groups and in different ethnic populations will be needed to clarify the exact role of the $PPAR{\gamma}$ Pro12Ala polymorphism in GC.

Production of Photodynamic Herbicide by Photosynthetic Bacteria (광합성균주에 의한 제초활성 물질의 생산)

  • Choi, Kyung-Min;Lee, Sung-Taik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.1
    • /
    • pp.25-32
    • /
    • 1997
  • The effect of levulinic acid (LA) and biosynthetic precursors of ${\delta}$-aminolevulinic acid (ALA) on the production of extracellular ALA was examined for the cells of soil derived Rhodospirillum rubrum N-1 belonged to the genus Rhodospirillaceae. The extracellular yield of ALA was increased to 23 fold (45 mg/l) from the basal condition (Lascelles' medium without L-glutamate) by successive addition of LA at initial (10 mM) and mid-log stage (30 mM) of cell cultivation. In addition to initial/mid-log mutual supplementations of LA (10 mM/30 mM) and glutamate (30/30 mM), respectively, by means of alternative feeding 10 mM $C_4$-precursors at mid-log phase of culture the extracellular ALA content was reached to 75 mg/l (40 fold).

  • PDF

A Fundamental Study on Utilization of Photosynthetic Bacteria Metabolites (광합성세균 균체대사산물의 자원화에 대한 기초적 연구)

  • Choi, Kyung-Min;Yang, Jae-Kyung;Park, Eung-Roh;Bae, Jin-Woo;Seo, Yong-Ki;Lee, Sung-Taik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.1
    • /
    • pp.63-69
    • /
    • 1997
  • The role of L-glutamic acid, a precursor of $C_5$ ALA biosynthetic pathway, on the production of 5-aminolevulinic acid (ALA) has been described in cells of Rhodospirillum rubrum N-1. To the Lascelles basal medium the addition of both 30 mM L-glutamicacid and 20 mM levulinic acid (LA) provided to increase the extracellular ALA yield up to 40 fold (76 mg/l). By the addition of both 60 mM glycine and succinic acid, precursorsof $C_4$ ALA biosynthetic pathway, at middle log phase of cell growth ALA yield was increased 27 fold (52 mg/l) although the celt growth was inhibited to a certain extent.

  • PDF

Extracellular 5-Aminolevulinic Acid Production by Escherichia coli Containing the Rhodopseudomonas palustris KUGB306 hemA Gene

  • Choi, Han-Pil;Lee, Young-Mi;Yun, Cheol-Won;Sung, Ha-Chin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1136-1140
    • /
    • 2008
  • The Rhodopseudomonas palustris KUGB306 hemA gene codes for 5-aminolevulinic acid (ALA) synthase. This enzyme catalyzes the condensation of glycine and succinyl-CoA to yield ALA in the presence of the cofactor pyridoxal 5'-phosphate. The R. palustris KUGB306 hemA gene in the pGEX-KG vector system was transformed into Escherichia coli BL21. The effects of physiological factors on the extracellular production of ALA by the recombinant E. coli were studied. Terrific Broth (TB) medium resulted in significantly higher cell growth and ALA production than did Luria-Bertani (LB) medium. ALA production was significantly enhanced by the addition of succinate together with glycine in the medium. Maximal ALA production (2.5 g/l) was observed upon the addition of D-glucose as an ALA dehydratase inhibitor in the late-log culture phase. Based on the results obtained from the shake-flask cultures, fermentation was carried out using the recombinant E. coli in TB medium, with the initial addition of 90 mM glycine and 120 mM succinate, and the addition of 45 mM D-glucose in the late-log phase. The extracellular production of ALA was also influenced by the pH of the culture broth. We maintained a pH of 6.5 in the fermenter throughout the culture process, achieving the maximal levels of extracellular ALA production (5.15 g/l, 39.3 mM).