Browse > Article

Extracellular 5-Aminolevulinic Acid Production by Escherichia coli Containing the Rhodopseudomonas palustris KUGB306 hemA Gene  

Choi, Han-Pil (School of Life Sciences and Biotechnology, Korea University)
Lee, Young-Mi (School of Life Sciences and Biotechnology, Korea University)
Yun, Cheol-Won (School of Life Sciences and Biotechnology, Korea University)
Sung, Ha-Chin (School of Life Sciences and Biotechnology, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.6, 2008 , pp. 1136-1140 More about this Journal
Abstract
The Rhodopseudomonas palustris KUGB306 hemA gene codes for 5-aminolevulinic acid (ALA) synthase. This enzyme catalyzes the condensation of glycine and succinyl-CoA to yield ALA in the presence of the cofactor pyridoxal 5'-phosphate. The R. palustris KUGB306 hemA gene in the pGEX-KG vector system was transformed into Escherichia coli BL21. The effects of physiological factors on the extracellular production of ALA by the recombinant E. coli were studied. Terrific Broth (TB) medium resulted in significantly higher cell growth and ALA production than did Luria-Bertani (LB) medium. ALA production was significantly enhanced by the addition of succinate together with glycine in the medium. Maximal ALA production (2.5 g/l) was observed upon the addition of D-glucose as an ALA dehydratase inhibitor in the late-log culture phase. Based on the results obtained from the shake-flask cultures, fermentation was carried out using the recombinant E. coli in TB medium, with the initial addition of 90 mM glycine and 120 mM succinate, and the addition of 45 mM D-glucose in the late-log phase. The extracellular production of ALA was also influenced by the pH of the culture broth. We maintained a pH of 6.5 in the fermenter throughout the culture process, achieving the maximal levels of extracellular ALA production (5.15 g/l, 39.3 mM).
Keywords
Extracellular production; 5-aminolevulinic acid; Escherichia coli; Rhodopseudomonas palustris; hemA;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Choi, H. P., H. J. Kang, H. C. Seo, and H. C. Sung. 2002. Isolation and identification of photosynthetic bacterium useful for wastewater treatment. J. Microbiol. Biotechnol. 12: 643-648
2 Lee, D. H., W. J. Jun, K. M. Kim, D. H. Shin, H. Y. Cho, and B. S. Hong. 2003. Inhibition of 5-aminolevulinic acid dehydratase in recombinant Escherichia coli using D-glucose. Enzyme Microb. Technol. 32: 27-34   DOI   ScienceOn
3 Lee, S.-Y. and D.-I. Kim. 2006. Perfusion cultivation of transgenic Nicotiana tabacum suspensions in bioreactor for recombinant protein production. J. Microbiol. Biotechnol. 16: 673-677   과학기술학회마을
4 Malik, Z., J. Hanania, and Y. Nitzan. 1990. New trends in photobiology: Bactericidal effect of photoactivated porphyrins - an alternative approach to antimicrobial drugs. J. Photochem. Photobiol. B Biol. 5: 281-293   DOI   ScienceOn
5 Rebeiz, C. A., J. A. Juvik, and C. C. Rebeiz. 1988. Porphyric insecticides. 1. Concept and phenomenology. Pesticide Biochem. Physiol. 30: 111-127
6 Shin, J.-A., Y. D. Kwon, O.-H. Kwon, H. S. Lee, and P. Kim. 2007. 5-Aminolevulinic acid biosynthesis in Escherichia coli coexpressing NADP-dependent malic enzyme and 5- aminolevulinate synthase. J. Microbiol. Biotechnol. 17: 1579- 1584   과학기술학회마을
7 Song, S. K., Y.-S. Jeong, P.-H. Kim, and G.-T. Chun. 2006. Effects of dissolved oxygen level on avermectin B1a production by Streptomyces avermitilis in computer-controlled bioreactor cultures. J. Microbiol. Biotechnol. 16: 1690-1698   과학기술학회마을
8 Vladimir, Y. B., A. L. Demain, and N. I. Zaitseva. 1997. The crucial contribution of starved resting cells to the elucidation of the pathway of vitamin B12 biosynthesis. Crit. Rev. Biotechnol. 17: 21-37   DOI   ScienceOn
9 Xie, L., M. A. Eiteman, and E. Altman. 2003. Production of 5- aminolevulinic acid by an Escherichia coli aminolevulinate dehydratase mutant that overproduces Rhodobacter sphaeroides aminolevulinate synthase. Biotechnol. Lett. 25: 1751-1755   DOI   ScienceOn
10 Xie, L., D. Hall, M. A. Eiteman, and E. Altman. 2003. Optimization of recombinant aminolevulinate synthase production in Escherichia coli using factorial design. Appl. Microbiol. Biotechnol. 63: 267-273   DOI   ScienceOn
11 Van der Werf, M. J. and J. G. Zeikus. 1996. 5-Aminolevulinate production by Escherichia coli containing the Rhodobacter sphaeroides hemA gene. Appl. Environ. Microbiol. 62: 3560- 3566
12 Rebeiz, C. A., A. Montazer-Zouhoor, J. M. Mayasich, B. C. Triphthy, S. M. Wu, and C. C. Rebeiz. 1988. Photodynamic herbicides: Recent development and molecular basis of selectivity. CRC Crit. Rev. Plant. Sci. 6: 385-406   DOI
13 Seo, H.-P., K.-I. Jo, C.-W. Son, J.-K. Yang, C.-H. Chung, S.-W. Nam, S.-K. Kim, and J.-W. Lee. 2006. Continuous production of pullulan by Aureobasidium pullulans HP-2001 with feeding of high concentration of sucrose. J. Microbiol. Biotechnol. 16: 374-380   과학기술학회마을
14 Choi, H. P., J. W. Hong, K. H. Rhee, and H. C. Sung. 2004. Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306. FEMS Microbiol. Lett. 236: 175-181   DOI   ScienceOn
15 Lee, D.-H., W.-J. Jun, D.-H. Shin, H.-Y. Cho, and B.-S. Hong. 2005. Effect of culture conditions on production of 5- aminolevulinic acid by recombinant Escherichia coli. Biosci. Biotechnol. Biochem. 69: 470-476   DOI   ScienceOn
16 Sasaki, K., T. Tanaka, and S. Nagai. 1998. Use of photosynthetic bacteria for the production of SCP and chemicals from organic wastes, pp. 247-291. In A. M. Martin (ed.), Bioconversion of Waste Materials to Industrial Products. Blackie Academic and Professional, London, England
17 Luond, R. M., J. Walker, and R. W. Neier. 1992. Assessment of the active site requirements of 5-aminolevulinic acid dehydratase: Evaluation of substrate and product analogues as competitive inhibitors. J. Org. Chem. 57: 5005-5013   DOI
18 Jordan, P. M. 1991. Biosynthesis of tetrapyrroles, pp. 1-24. In A. Neuberger and L. L. M. van Deenen (eds.). New Comprehensive Biochemistry, Vol. 19. Elsevier, Amsterdam, The Netherlands
19 Mauzerall, D. and S. Granick. 1956. The occurrence and determination of $\delta$-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219: 435-446
20 Takeya, H., T. Tanaka, T. Hotta, and K. Sasaki. 1997. Production methods and applications of 5-aminolevulinic acid. Porphyrins 6: 127-135
21 Choi, C., B. S. Hong, H. C. Sung, H. S. Lee, and J. H. Kim. 1999. Optimization of extracellular 5-aminolevulinic acid production from Escherichia coli transformed with ALA synthetase gene of Bradyrhizobium japonicum. Biotechnol. Lett. 21: 551-554   DOI   ScienceOn
22 Levy, J. G. 1995. Photodynamic therapy. Trends Biotechnol. 13: 14-18   DOI   ScienceOn
23 Fu, W., J. Lin, and P. Cen. 2007. 5-Aminolevulinate production with recombinant Escherichia coli using a rare codon optimizer host strain. Appl. Microbiol. Biotechnol. 75: 777-782   DOI   ScienceOn
24 Nishikawa, S., K. Watanabe, T. Tanaka, N. Miyachi, Y. Hotta, and Y. Murooka. 1999. Rhodobacter sphaeroides mutants which accumulate 5-aminolevulinic acid under aerobic and dark conditions. J. Biosci. Bioeng. 87: 798-804   DOI   ScienceOn
25 Lascelles, J. 1978. Regulation of pyrrole synthesis, pp. 795- 808. In R. K. Clayton and W. R. Sistrom (eds.), The Photosynthetic Bacteria. Plenum Press, New York
26 Li, J. M., O. Brathwaite, S. D. Cosloy, and C. S. Russel. 1989. 5-Aminolevulinic acid synthesis in Escherichia coli. J. Bacteriol. 171: 2547-2552   DOI
27 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
28 Sasikala, Ch., Ch. V. Ramana, and P. R. Rao. 1994. 5- Aminolevulinic acid: A potential herbicide/insecticide from microorganisms. Biotechnol. Prog. 10: 451-459   DOI   ScienceOn
29 Guan, K. L. and J. E. Dixon. 1991. Eukaryotic proteins expressed in Escherichia coli: An improved thrombin cleavage and purification procedure of fusion proteins with glutathione Stransferase. Anal. Biochem. 192: 262-267   DOI   ScienceOn