References
- Bradford, M. M. 1976. A rapid and sensitive method of the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
- Bharadwaj, S., S. E. Hitchcock-DeGregori, A. Thorburn, and G. L. Prasad. 2004. N-terminus is essential for tropomyosin functions. J. Biol. Chem. 279, 14039-14048 https://doi.org/10.1074/jbc.M310934200
-
Cho, Y. J. 2000. The carboxyl terminal amino acid residues glutamate276- threonine277 are important for actin affinity of the unacetylated smooth
$\alpha$ -tropomyosin. J. Biochem. Mol. Biol. 33, 531-536 - Cho, Y. J. and S. E. Hitchcock-DeGregori. 1991. Relationship between alternatively spliced exons and functional domains in tropomyosin. Proc. Natl. Acad. Sci. USA. 88, 10153-10157 https://doi.org/10.1073/pnas.88.22.10153
- Cho, Y. J., J. Liu and S. E. Hitchcock-DeGregori. 1990. The amino terminus of muscle tropomyosin is a major determinant for function. J. Biol. Chem. 265, 538-545
- Greenfield N. J, T. Palm and S. E. Hitchcock-DeGregori. 2002. Structure and interactions of the carboxyl terminus of striated muscle alpha-tropomyosin: it is important to be flexible. Biophys J. 83, 2754-2766 https://doi.org/10.1016/S0006-3495(02)75285-5
- Greenfield, N. J. and S. E. Hitchcock-DeGregori. 1995 The stability of tropomyosin, a two-stranded coiled coil protein is primarily a function of the hydrophobicity of residues at the helix-helix interface. Biochemistry. 34, 16797-16805 https://doi.org/10.1021/bi00051a030
-
Greenfield, N., W. F. Stafford and S. E. Hitchcock- DeGregori. 1994. The effect of N-terminal acetylation on the structure of an N-terminal tropomyosin peptide and
$\alpha$ $\alpha$ -tropomyosin. Protein Sci. 3, 402-10 https://doi.org/10.1002/pro.5560030304 -
Hammell, R. and S. E. Hitchcock-DeGregori. 1996 Mapping the functional domains within the carboxyl terminus of
$\alpha$ -tropomyosin encoded by the alternatively spliced ninth exon. J. Biol. Chem. 271, 4236-4242 https://doi.org/10.1074/jbc.271.8.4236 - Heald, R. W. and S. E. Hitchcock-DeGregori. 1988. The structure of the amino terminus of tropomyosin is critical for binding to actin in the absence and presence of troponin. J. Biol. Chem. 263, 5254-5259
- Heeley, D. H., L. B., Smillie and E. M. Lohmeier-Vogel. 1989. Effects of deletion of tropomyosin overlap on regulated actomyosin subfragment 1 ATPase. Biochem J. 258, 831-836
- Hirel, P-H., J-M. Schmitter, P. Dessen, G. Fayat and S. Blanquet. 1989 Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid. Proc. Natl. Acad. Sci. 86, 8247-8251 https://doi.org/10.1073/pnas.86.21.8247
- Hitchcock-DeGregori, S. E., S. Mandala and G. A. Sachs. 1982. Changes in actin lysine reactivities during polymerization detected using a competitive labeling method. J. Biol. Chem. 257, 12573-12580
- Hitchcock-DeGregori, S. E., S. F. Lewis and T.M.-T. Chou. 1985. Tropomyosin lysine reactivities and relationship to coiled-coil structure. Biochemistry. 39, 11913-11920 https://doi.org/10.1021/bi000977g
-
Jung, S.-J., S.-M. Seo, K.-H. Suh, J.-S. Yang and Y-J. Cho. 2001. Effect of three amino acid residues at the carboxyl terminus in unacetylated
$\alpha$ -tropomyosin on actin affinity. J. Life Science 11, 1-6 - Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685 https://doi.org/10.1038/227680a0
- Lehrer, S. and Morris. 1982. Dual effects of tropomyosin and troponin-tropomyosin on actomyosin subfragment 1 ATPase. J. Biol. Chem. 257, 8073-8080
- Maytum, R., M. A. Geeves and M. Konrad. 2000. Actomyosin regulatory properties of yeast tropomyosin are dependent upon N-terminal modification. Biochemistry. 39, 11913-11920 https://doi.org/10.1021/bi000977g
- Maytum, R., S. S. Lehrer and M. A. Geeves. 1999. Cooperativity and switching within the three-state model of muscle regulation. Biochemistry 38, 1102-1110 https://doi.org/10.1021/bi981603e
- Michele, D. E., F. P. Albayya and J. M. Metzger. 1999. Thin filament protein dynamics in fully differentiated adult cardiac myocytes: toward a model of sarcomere maintenance. J. Cell Biol. 145, 1483-1495 https://doi.org/10.1083/jcb.145.7.1483
-
Monteiro, P. B., R. C. Lataro, J. A. Ferro and F. d. C. Reinach. 1994. Functional
$\alpha$ -tropomyosin produced in Escherichia coli. A dipeptide extension can substitute the amino terminal acetyl group. J. Biol. Chem. 269, 10461- 10466 - Moraczewska, M., K., Nicholson-Flynn and S. E. Hitchcock- DeGregori. 1999. The Ends of tropomyosin are major determinants of actin affinity and myosin subfragment 1-induced binding of F-actin in the open state. Biochemistry 38, 14885-15892 https://doi.org/10.1021/bi991816j
- Pittenger, M. F., J. A. Kazzaz and D. M. Helfman. 1994. Functional properties of non-muscle tropomyosin isoforms. Curr. Opin. Cell Biol. 1, 96-104 https://doi.org/10.1016/0955-0674(94)90122-8
- Pittenger, M. F., A. Kistler and D. M. Helfman. 1995. Alternatively spliced exons of the beta tropomyosin gene exhibit different affinities for F-actin and effects with nonmuscle caldesmon. J. Cell Sci. 108, 3253-3265
- Polevoda, B. and F. Sherman. (2003) N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J. Mol. Biol. 325, 595-622 https://doi.org/10.1016/S0022-2836(02)01269-X
-
Polevoda, B. and F. Sherman. 2000. N
$^{\alpha}$ -terminal acetylation of eukaryotic proteins. J. Biol. Chem. 275, 36479-36482 https://doi.org/10.1074/jbc.R000023200 -
Polevoda, B., T. S. Cardillo, T. C. Doyle, G. S. Bedi and F. Sherman. 2003. Nat3p and Mdm20p are required for function of yeast NatB N
$^{\alpha}$ -terminal acetyltransferase and of actin and tropomyosin. J. Biol. Chem. 278, 30686-30697 https://doi.org/10.1074/jbc.M304690200 -
Ruiz-Opazo, N. and B. Nadal-Ginard. 1987.
$\alpha$ -tropomyosin gene organization. Alternative splicing of duplicated isotype- specific exons accounts for the production of smooth and striated muscle isoforms. J. Biol. Chem. 262, 4755-4765 - Sambrook. J., E. F. Fritsch and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
- Singer, J. and J. M. Shaw. 2003. Mdm20 protein functions with Nat3 protein to acetylate Tpm1 protein and regulate tropomyosin-actin interactions in budding yeast. Proc. Natl. Acad. Sci. 100, 7644-7649 https://doi.org/10.1073/pnas.1232343100
- Urbancikova, M. and S. E. Hitchcock-DeGregori. 1994. Requirement of amino-terminal modification for striated muscle alpha-tropomyosin function. J Biol Chem. 269, 24310-24315
- White, H. D. 1982. Special instrumentation and techniques for kinetic studies of contractile systems. Methods Enzymol. 85(Pt B), 698-708 https://doi.org/10.1016/0076-6879(82)85057-X
- Williams, D. L., L. E. Greene and E. Eisenberg. 1988. Cooperative turning on myosin subfragment 1 adenosine triphosphatase activity by the troponin-tropomyosin-actin complex. Biochemistry 27, 6987-6993 https://doi.org/10.1021/bi00418a048
- Winkelmann, D. A., H. Mekeel and I. Rayment. 1985. Packing analysis of crystalline myosin subfragment-1. Implication for the size and shape of myosin heads. J. Mol. Biol. 181, 487-501 https://doi.org/10.1016/0022-2836(85)90422-X
- Zot, A. S. and J. D. Potter. 1987. Structural aspects of troponin-tropomyosin regulation of skeletal muscle contraction. Ann. Rev. Biophys. Biophys. Chem. 16, 535-539 https://doi.org/10.1146/annurev.bb.16.060187.002535
Cited by
- Glutamine Residue at 276 of smooth muscle α-tropomyosin is primarily responsible for higher actin affinity vol.17, pp.2, 2007, https://doi.org/10.5352/JLS.2007.17.2.204