• 제목/요약/키워드: AlAs layer-by-layer deposition

검색결과 296건 처리시간 0.027초

Flexible Thin Film Encapsulation and Planarization Effectby Low Temperature Flowable Oxide Process

  • Yong, Sang Heon;Kim, Hoonbea;Chung, Ho Kyoon;Chae, Heeyeop
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.431-431
    • /
    • 2013
  • Flexible Organic Light Emitting Diode (OLED) displays are required for future devices. It is possible that plastic substrates are instead of glass substrates. But the plastic substrates are permeable to moisture and oxygen. This weak point can cause the degradation of fabricated flexible devices; therefore, encapsulation process for flexible substrate is needed to protect organic devices from moisture and oxygen. Y.G. Lee et al.(2009) [1] reported organic and inorganic multilayer structure as an encapsulation barrier for enhanced reliability and life-time.Flowable Oxide process is a low-temperature process which shows the excellent gap-fill characteristics and high deposition rate. Besides, planarization is expected by covering dust smoothly on the substrate surface. So, in this research, Bi-layer structured is used for encapsulation: Flowable Oxide Thin film by PECVD process and Al2O3 thin film by ALD process. The samples were analyzed by water vapor transmission rate (WVTR) using the Calcium test and film cross section images were obtained by FE-SEM.

  • PDF

상온에서 성막한 고감도의 Al1-xScxN 박막의 압력 감지 특성 (Pressure Sensing Properties of Al1-xScxN Thin Films Sputtered at Room Temperature)

  • 석혜원;김세기;강양구;이영진;홍연우;주병권
    • 센서학회지
    • /
    • 제23권6호
    • /
    • pp.420-424
    • /
    • 2014
  • Aluminum-scandium nitride ($Al_{1-x}Sc_xN$) thin films with a TiN buffer layer have been fabricated on SUS430 substrate by RF reactive magnetron sputtering at room temperature under 50% $N_2$/Ar. The effect of Sc-doping on the structure and piezoelectric properties of AlN films has been investigated using SEM, XRD, surface profiler and pressure-voltage measurements. The as-deposited AlN films showed polycrystalline phase, and the Sc-doped AlN film, the peak of AlN (002) plane and the crystallinity became very strong. With Sc-doping, the crystal size of AlN film was grown from ~20 nm to ~100 nm. The output signal voltage of AlN sensor showed a linear behavior between 15~65 mV, and output signal voltage of Sc-doped AlN sensor was increased over 7 times. The pressure-sensing sensitivity of AlN film was calculated about 10.6mV/MPa, and $Al_{0.88}Sc_{0.12}N$ film was calculated about 76 mV/MPa.

혼성물리화학기상 증착법에 의한 알루미나 완충층을 가진 실리콘 기판 위의 $MgB_2$ 박막제조에 대한 연구 (Deposition of $MgB_2$ Thin Films on Alumina-Buffered Si Substrates by using Hybrid Physical-Chemical Vapor Deposition Method)

  • 이태경;박세원;성원경;허지영;정순길;이병국;안기석;강원남
    • Progress in Superconductivity
    • /
    • 제9권2호
    • /
    • pp.177-182
    • /
    • 2008
  • [ $MgB_2$ ] thin films were fabricated using hybrid physical-chemical vapor deposition (HPCVD) method on silicon substrates with buffers of alumina grown by using atomic layer deposition method. The growth war in a range of temperatures $500\;{\sim}\;600^{\circ}C$ and under the reactor pressures of $25\;{\sim}\;50\;Torr$. There are some interfacial reactions in the as-grown films with impurities of mostly $Mg_2Si$, $MgAl_2O_4$, and other phases. The $T_c$'s of $MgB_2$ films were observed to be as high as 39 K, but the transition widths were increased with growth temperatures. The magnetization was measured as a function of temperature down to the temperature of 5 K, but the complete Meissner effect was not observed, which shows that the granular nature of weak links is prevailing. The formation of mostly $Mg_2Si$ impurity in HPCVD process is discussed, considering the diffusion and reaction of Mg vapor with silicon substrates.

  • PDF

탄소나노튜브를 알루미늄이 첨가된 산화아연으로 코팅한 층상 복합체의 일산화질소 가스 감지 특성 (NO Gas Sensing Characteristics of Layered Composites of Carbon Nanotubes Coated with Al-Doped ZnO)

  • 안은성;정훈철;웬래홍;오동훈;김효진;김도진
    • 한국재료학회지
    • /
    • 제19권11호
    • /
    • pp.631-636
    • /
    • 2009
  • We investigated the NO gas sensing characteristics of ZnO-carbon nanotube (ZnO-CNT) layered composites fabricated by coaxial coating of single-walled CNTs with a thin layer of 1 wt% Al-doped ZnO using rf magnetron sputtering deposition. Morphological studies clearly revealed that the ZnO appeared to form beadshaped crystalline nanoparticles with an average diameter as small as 30 nm, attaching to the surface of the nanotubes. It was found that the NO gas sensing properties of the ZnO-CNT layered composites were dramatically improved over Al-doped ZnO thin films. It is reasoned from these observations that an increase in the surface-to-volume ratio associated with the numerous ZnO “nanobeads” on the surface of the CNTs results in the enhancement of the NO gas sensing properties. The ZnO-CNT layered composite sensors exhibited a maximum sensitivity of 13.7 to 2 ppm NO gas at a temperature of 200${^{\circ}C}$ and a low NO gas detection limit of 0.2 ppm in dry air.

정공 주입 물질 두께 변화에 따른 유기 발광 다이오우드 효율 향상 (Efficiency Improvement of the Organic Light-Emitting Diodes depending on Thickness Variation of Hole-Infection Materials)

  • 김원종;이영환;차기호;이상교;김태완;홍진웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 C
    • /
    • pp.1291-1292
    • /
    • 2006
  • In the structure of ITO/HIL/$Alq_3$/Al device, we investigated an efficiency improvement of the Organic Light-Emitting Diodes depending on thickness variation of hole-injection layer. Using the thermal evaporation in a base vacuum $5{\times}10^{-5}$[Torr], we have measured efficiency after the $Alq_3$ was evaporated to 100 [nm] as a deposition rate $1.5[{\AA}/s]$. In optimal condition, when PTFE thickness increased from 0 to 3.0 [nm], we have obtained that an optimal thickness of PTFE was 2.5 [nm]. And using the PTFE, luminance efficiency and external quantum efficiency of the device were improved by 12.8 times and 11.1 times, respectively.

  • PDF

실리콘 태양전지 제조공정과 열화의 상관관계 분석 (Analysis of Correlation Between Silicon Solar Cell Fabrication Steps and Possible Degradation)

  • 차예원;;이준신
    • 한국전기전자재료학회논문지
    • /
    • 제36권1호
    • /
    • pp.16-22
    • /
    • 2023
  • In a solar cell, degradation refers to the decrease in performance parameters caused by defects originated due to various causes. During the fabrication process of solar cells, degradation is generally related to the processes such as passivation or firing. There exist sources of many types of degradation; however, the exact cause of Light and elevated Temperature Induced Degradation (LeTID) is yet to be determined. It is reported that the degradation and the regeneration occur due to the recombination of hydrogen and an arbitrary substance. In this paper, we report the deposition of Al2O3 and SiNX on silicon wafers used in the Passivated Emitter and Rear Contact (PERC) solar structure and its degradation pattern. A higher degradation rate was observed in the sample with single layer of Al2O3 only, which indicates that the degradation is affected by the presence or the absence of a passivation thin film. In order to alleviate the degradation, optimization of different steps should be carried out in consideration of degradation in the solar cell fabrication process.

Dependency of the emission efficiency on doping profile of the red phosphorescent organic light-emitting diodes

  • 박원혁
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.224-224
    • /
    • 2016
  • Many researchers have been tried to improve the performance of the phosphorescent organic light-emitting diode(PHOLED) by controlling of the dopant profile in the emission layer. In this work, as shown in Fig. 1 insert, a typical red PHOLED device which has the structure of ITO/NPB(50nm)/CBP(30nm)/TPBi(10nm)/Alq3(20nm)/LiF(0.8nm)/Al(100nm) is fabricated with a 5nm thick doping section in the emission layer. The doping section is formed by co-deposition of CBP and Ir(btp)2acac with a doping concentration of 8%, and it's location(x) is changed from HTL/EML interface to EML/HBL in 5nm steps. The current efficiency versus current density of the devices are shown in Fig. 1. By changing the location of doping section, as shown in Fig. 1 and 2, at x=5nm, the efficiency shows the maximum of 3.1 cd/A at 0.5 mA/cm2 and it is slightly decreased when the section is closed to HTL and slightly increased when the section is closed to HBL. If the doping section is closed to HTL(NPB) the excitons can be quenched easily to NPB's triplet state energy level(2.5eV) which is relatively lower than that of CBP(2.6eV). Because there is a hole accumulation at EML/HBL interface the efficiency can be increased slightly when the section is closed to HBL. Even the thickness of the doping section is only 5nm,. the maximum efficiency of 3.1 cd/A with x=5 is closed to that of the homogeneously doped device, 3.3 cd/A, because the diffusion length of the excitons is relatively long. As a result, we confirm that the current efficiency of the PHOLED can be improved by the doping profile optimization such as partially, not homogeneously, doped EML structure.

  • PDF

알루미늄 산화물 절연막에 하프늄의 첨가가 자기터널접합의 특성에 미치는 영향 (Effect of Insertion of Hf layer in Al oxide tunnel barrier on the properties of magnetic tunnel junctions)

  • 임우창;배지영;이택동;박병국
    • 한국자기학회지
    • /
    • 제14권1호
    • /
    • pp.13-17
    • /
    • 2004
  • 알루미늄 산화물 절연막에 하프늄의 첨가가 미치는 영향에 관해서 연구하였다. 하프늄을 첨가할 경우 자기저항이 증가하고 자기저항의 온도의존도와 바이어스 전압의존도가 감소함을 관찰하였다. 이는 하프늄의 첨가가 알루미늄 산화물의 결함의 감소를 유발하기 때문이라 판단된다. 하프늄의 첨가된 알루미늄 산화물의 미세구조를 분석한 결과 하프늄이 알루미늄과 혼합됨이 관찰 되었다. 알루미늄과 하프늄의 혼합 금속을 절연막 형성을 위한 금속으로 사용한 결과 하프늄의 첨가된 알루미늄과 동일한 결과를 얻었다. 이로부터 하프늄이 알루미늄과 혼합하면서 절연막 내의 결함을 감소시키고 그에 따른 자기저항의 증가와 자기저항의 온도의존도와 바이어스 전압의존도를 감소시키는 결과를 가져온 것으로 판단된다.

2-TNATA:C60 정공 주입층을 이용한 유기발광다이오드의 성능 향상 연구 (Enhanced Efficiency of Organic Electroluminescence Diode Using 2-TNATA:C60 Hole Injection Layer)

  • 박소현;강도순;박대원;최영선
    • 폴리머
    • /
    • 제32권4호
    • /
    • pp.372-376
    • /
    • 2008
  • 유기발광소자(OLED)에서 정공 주입층으로 사용되는 4,4',4"-tris(N-(2-naphthyl)-N-phenylamino)-triphenylamine(2-TNATA)가 전극으로 사용되는 ITO(indium tin oxide)와 홀 수송층(hole transport layer, HTL)사이에 박막으로 진공 증착되었다. 공증착에 의해 C60이 약 20 wt% 도핑된 2-TNATA:C60 층을 제조하였으며, AFM과 XRD를 이용하여 2-TNATA:C60 박막의 분자 배향성 및 토폴로지를 관찰하였다. 또한, 다층 소자의 J-V, L-V 및 전류 효율 특성이 고찰되었다. C60은 분자 배향성을 가지고 있으나, 2-TNATA:C60 박막은 C60 분자의 균일한 분산에 의해 분자 배향성이 확인되지 않았다. C60의 도핑에 의해서 2-TNATA 박막이 더욱 조밀해지고 균일해지는 것을 확인하였으며, 이로 인하며 박막 내의 전류 밀도가 증가됨을 확인하였다. 2-TNATA:C60 하이브리드 박막을 이용하여 ITO/2-TNATA:C60/NPD/$Alq_3$/LiF/Al 다층 소자를 제조하였을 때 소자의 휘도가 향상되었으며 소자 효율도 약 4.7에서 약 6.7 cd/A로 증가하였다.

R.F 마그네트론 스퍼트링으로 작성된 $TiO_2$박막의 $NO_x$ 감지 특성 ($NO_x$ Sensing Characteristic of $TiO_2$ Thin Film Deposited by R.F Magnetron Sputtering)

  • 고희석;박재윤;박상현
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권12호
    • /
    • pp.567-572
    • /
    • 2002
  • In these days, diesel vehicle or power plant emits $NO_X\; and SO_2$ which cause air pollution like acid-rain, ozone layer destroy and optical smoke, therefore there are many kinds of methods considered for removing them such as SCR, catalyst, plasma process, and plasma-catalyst hybrid process. T$TiO_2$ is commonly used as catalyst to remove $NO_X$ gas because it have very excellent chemical characteristic as photo catalyst. In this paper, $NO_X$ sensing characteristic of $TiO_2$ thin film deposited by R.F Magnetron sputtering is investigated. A finger shaped electrode on $Al_2$O$_3$ substrate is designed and $TiO_2$ is deposited on the electrode by the magnetron sputtering deposition system. Chemical composition of the deposited $TiO_2$ thin film is $TiO_{1.9}$ by RBS analysis. When the UV is irradiated on it with flowing air, capacitance of $TiO_2$ thin film increases, however, when NO gas is put into the system with air, it immediately decreases because of photo chemical reaction. and it monotonously decreases with increasing NO concentration.