Browse > Article

Enhanced Efficiency of Organic Electroluminescence Diode Using 2-TNATA:C60 Hole Injection Layer  

Park, So-Hyun (Department of Chemical Engineering, Pusan National University)
Kang, Do-Soon (Department of Chemical Engineering, Pusan National University)
Park, Dae-Won (Department of Chemical Engineering, Pusan National University)
Choe, Young-Son (Department of Chemical Engineering, Pusan National University)
Publication Information
Polymer(Korea) / v.32, no.4, 2008 , pp. 372-376 More about this Journal
Abstract
Vacuum deposited 4,4',4"-tris(N-(2-naphthyl)-N-phenylamino)-triphenylamine (2-TNATA), used as a hole injection (HIL) material in OLEDs, is placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in the devices. C60-doped 2-TNATA:C60 (20 wt%) film was formed via co-evaporation process and molecular ordering and topology of 2-TNATA:C60 films were investigated using XRD and AFM. The J-V, L-V and current efficiency of multi-layered devices were characterized as well. Vacuum-deposited C60 film was molecularly oriented, but neither was 2-TNATA:C60 film due to the uniform dispersion of C60 molecules in the film. By using C60-doped 2-TNATA:C60 film as a HIL, the current density and luminance of a multi-layered ITO/2-TNATA:C60/NPD/$Alq_3$/LiF/Al device were significantly increased and the current efficiency of the device was increased from 4.7 to 6.7 cd/A in the present study.
Keywords
2-TNATA; OLED; C60 doping; current efficiency; vacuum deposition;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 S. H. Askari, S. D. Rughooputh, and F. Wudl, Synth. Met., 29, 129 (1989)
2 M. M. El-Nahass, Z. El-Gohary, and H. S. Soliman, Opt. Laser Technol., 35, 523 (2003)   DOI   ScienceOn
3 K. P. Khrishnakumar and C. S. Menon, Mater. Lett., 48, 64 (2001)   DOI   ScienceOn
4 S. Oh, D. S. Kang, and Y. Choe, J. Korean Ind. Eng. Chem., 17, 591 (2006)
5 D. S. Kang and Y. Choe, J. Korean Ind. Eng. Chem., 18, 506 (2007)
6 M. I. Boamfa, P. C. M. Christianen, J. C. Maan, H. Engelkamp, and R. J. M. Nolte, Physcia B, 294, 343 (2001)   DOI
7 K. L. Brandon, P. G. Bently, D. D. C. Bradley, and D. A, Dunmur, Synth. Met., 91, 305 (1997)   DOI   ScienceOn
8 Z. G. Ji, K. W. Wong, P. K.Tse, R. W. M. Kwok, and W. M. Lau, Thin Solid Films, 402,79 (2002)   DOI
9 B. J. Chen, X. W. Sun, and Y. K. Li, Appl. Phys. Lett., 82, 3017 (2003)   DOI   ScienceOn
10 J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Freind, P. L. Burn, and A. B. Holmes, Nature, 347, 539 (1990)   DOI
11 E. S. Jung, E.-H. Cho, and P.-J. Chung, J. Korean Ind. Eng. Chem., 9, 548 (1998)
12 Y. Yuan, D. Grozea, and Z. H. Lua, J. Appl. Phys., 86, 143509 (2005)
13 Adam M. Hawkridge and Jeanne E. Pemberton, J. Am. Chem. Soc., 125, 624 (2003)   DOI   ScienceOn
14 J. Y. Lee and H. K. Jang, J. Appl. Phys., 88, 183502 (2006)
15 Vivek Kumar Shukla and Satyendra Kumar, Appl. Surface Sci., 253, 6848 (2007)   DOI   ScienceOn
16 S. Yanagiya, S. Nishikata, G. Sazaki, A. Hoshino, K. Nakajima, and T. Inoue, J. Cryst. Growth., 254, 244 (2003)   DOI
17 B. J. Chen, X. W. Sun, T. K. S. Wong, X Hu, and A. Uddin, Appl. Phys. Lett., 84, 063505 (2005)
18 Y. Choe, S. Y. Park, and D. W. Park, J. Chem. Eng. Jpn, 38 600 (2005)   DOI   ScienceOn
19 P. L. Burn, D. D. C. Bradley, R. H. Friend, D. A. Halliday, A. B. Holmes, R. W. Jackson, and A. Kraft, J. Chem. Soc., 1, 3225 (1992)
20 C. iebeler, H. Antoniadis, Donal D. C. Bradley, and Y. Shirota, J. Appl. Phys., 85, 1608 (1999)
21 C. W. Tang and S. A. Van Slake, Appl. Phys. Lett., 51, 913 (1987)   DOI
22 Y. Y. Yuan, S. Han, D. Grozea, and Z. H. Lu, Appl. Phys. Lett., 88, 093603 (2006)