• Title/Summary/Keyword: Al-doped ZnO films

Search Result 249, Processing Time 0.153 seconds

Thermal Treated Al-doped Zinc Oxide (AZO) Film-embedding UV Sensors

  • Kim, Jun-Dong;Yun, Ju-Hyeong;Ji, Sang-Won;Park, Yun-Chang;Anderson, Wayne A.;Han, Seok-Gyu;Kim, Yeong-Guk;Kim, Jae-Hyeon;Anderson, Wayne A.;Lee, Jeong-Ho;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.90-90
    • /
    • 2011
  • Transparent conducting oxide (TCO) films have been intensively utilized in the electric applications, such as, displays, lightings and solar cells due to the good electric conductivity with an excellent transmittance of the visible light. We, herein present an excellent Al-doped ZnO film (AZO), which has been fabricated by co-sputtering method. An as-deposited AZO film had an optical transmittance of 84.78% at 550 nm and a resistivity of $7.8{\times}10^{-3}{\Omega}cm$. A rapid annealing process significantly improved the optical transmittance and electrical resistivity of the AZO film to 99.67% and $1{\times}10^{-3}{\Omega}cm$, respectively. The fabricated AZO film was fabricated for a metal-semiconductor-metal (MSM) structure. The AZO film-embedding MSM device was highly responsive to a UV light.

  • PDF

Temperature-dependent Photoluminescence Study on Aluminum-doped Nanocrystalline ZnO Thin Films by Sol-gel Dip-coating Method

  • Nam, Giwoong;Lee, Sang-Heon;So, Wonshoup;Yoon, Hyunsik;Park, Hyunggil;Kim, Young Gue;Kim, Soaram;Kim, Min Su;Jung, Jae Hak;Lee, Jewon;Kim, Yangsoo;Leem, Jae-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.95-98
    • /
    • 2013
  • The photoluminescence (PT) properties of Al-doped ZnO thin films grown by the sol-gel dip-coating method have been investigated. At 12 K, nine distinct PL peaks were observed at 2.037, 2.592, 2.832, 3.027, 3.177, 3.216, 3.260, 3.303, and 3.354 eV. The deep-level emissions (2.037, 2.592, 2.832, and 3.027 eV) were attributed to native defects. The near-band-edge (NBE) emission peaks at 3.354, 3.303, 3.260, 3.216, and 3.177 eV were attributed to the emission of the neutral-donor-bound excitons ($D^0X$), two-electron satellite (TES), free-to-neutral-acceptors (e,$A^0$), donor-acceptor pairs (DAP), and second-order longitudinal optical (2LO) phonon replicas of the TES (TES-2LO), respectively. According to Haynes' empirical rule, we calculated the energy of a free exciton (FX) to be 3.374 eV. The thermal activation energy for $D^0X$ in the nanocrystalline ZnO thin film was found to be ~25 meV, corresponding to the thermal dissociation energy required for $D^0X$ transitions.

Influence of top AZO electrode deposited in hydrogen ambient on the efficiency of Si based solar cell

  • Chen, Hao;Jeong, Yun-Hwan;Chol, Dai-Seub;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.321-322
    • /
    • 2009
  • Al doped ZnO films deposited on glass substrate using RF magnetron sputtering in Ar and $Ar+H_2$ gas ambient at $100^{\circ}C$. The films deposited in $Ar+H_2$ were hydrogen-annealed at the temperature of $150\sim300^{\circ}C$ for 1hr. The lowest resistivity of $4.25\times10^{-4}{\Omega}cm$ was obtained for the AZO film deposited in $Ar+H_2$ after hydrogen annealing at $300^{\circ}C$ for 1hr. The average transmittance is above 85% in the range of 400-1000 nm for all films. The absorption efficiency of solar cell was improved by using the optimized AZO films as a top electrode.

  • PDF

Characterization of Al-Doped ZnO Thin Film Grown on Buffer Layer with RF Magnetron Sputtering Method (버퍼 층을 이용한 RF 마그네트론 스퍼터 방법에 의한 Al:ZnO 박막의 성장)

  • No, Young-Soo;Park, Dong-Hee;Kim, Tae-Whan;Choi, Ji-Won;Choi, Won-Kook
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.3
    • /
    • pp.213-220
    • /
    • 2009
  • The optimal condition of low temperature deposition of transparent conductive Al-doped zinc oxide (AZO) films is studied by RF magnetron sputtering method. To achieve enhanced-electrical property and good crystallites quality, we tried to deposit on glass using a two-step growth process. This process was to deposit AZO buffer layer with optimal growth condition on glass in-situ state. The AZO film grown at rf 120 W on buffer layer prepared at RF $50{\sim}60\;W$ shows the electrical resistivity $3.9{\times}10^{-4}{\Omega}cm$, Carrier concentration $1.22{\times}10^{21}/cm^3$, and mobility $9.9\;cm^2/Vs$ in these results, The crystallinity of AZO film on buffer layer was similar to that of AZO film on glass with no buffer later but the electrical properties of the AZO film were 30% improved than that of the AZO film with no buffer layer. Therefore, the cause of enhanced electrical properties was explained to be dependent on degree of crystallization and on buffer layer's compressive stress by variation of $Ar^+$ ion impinging energy.

Characteristic of AZO Thin Film Deposited by Facing Targets Sputtering with Magnetic Field Type (FTS장치의 자계 분포에 따라 제작된 AZO 박막의 특성)

  • Kim, Sangmo;Shin, Keon Yuep;Keum, Min jong;Kim, Kyung Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.30-34
    • /
    • 2016
  • We investigated magnetic field, discharged voltage, and as-deposited film uniformity at facing targets sputtering (FTS) system with magnetic field type: i) concentrated and ii) distributed magnetic field type. And Al doped ZnO (AZO) films were prepared at two magnetic field type such as concentrated magnetic field type and distributed magnetic field type, respectively. Discharge voltage at the distribution type is lower than concentration type due to low magnetic flux (middle magnetic flux: Concentration 1200 G and Distribution 600 G). The films deposited at the distributed magnetic field were more uniform than concentration type. All of prepared AZO films had a resistivity of under $10^{-4}[{\Omega}{\cdot}cm]$ and a transmittance of more than 85 % in the visible range.

Influence of Ag thickness on properties of AZO/Ag/AZO Multi-layer Thin Films (AZO/Ag/AZO 다층박막의 Ag두께에 따른 특성 연구)

  • Yeon, Je ho;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.27-31
    • /
    • 2017
  • AZO/Ag/AZO multi-layer films deposited on glass substrate by RF magnetron sputtering and thermal evaporator have a much better electrical properties than Al-doped ZnO thin films. The multi-layer structure consisted of three layers, AZO/Ag/AZO, the electrical and optical properties of AZO/Ag/AZO were changed mainly by thickness of Ag layers. The optimum thickness of Ag layers was determined to be $90{\AA}$ for high optical transmittance and good electrical conductivity. The Ag layers thickness $90{\AA}$ is an optical transmittance greater than 80% of visible light and the obtained multilayer thin film with the low resistivity of $8.05{\times}10-3{\Omega}cm$ and the low sheet resistance $5.331{\Omega}/sq$. Applying to TCO and Solar electrode will improve efficiency.

  • PDF

Effect of oxalic acid solution to optimize texturing of the front layer of thin film sloar cells

  • Park, Hyeong-Sik;Jang, Gyeong-Su;Jo, Jae-Hyeon;An, Si-Hyeon;Jang, Ju-Yeon;Song, Gyu-Wan;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.401-401
    • /
    • 2011
  • In this work, we deposited Al2O3doped ZnO (AZO) thin films by direct current (DC) magnetron sputtering method with a $40^{\circ}$ tilted target, for application in the front layer of thin film solar cell. Wet chemical etching behavior of AZO films was also investigated. In order to optimize textured AZO films, oxalic acid ($C_2H_2O_4$)has been used as wet etchant of AZO film. In this experiment we used 0.001% concentration of oxalic acid various etching time, that showed an anisotropy in etching texture of AZO films. Electrical resistivity, Hall mobility and carrier concentration measurements are performed by using the Hall measurement, that are $6{\times}10^{-4}{\Omega}cm$, $20{\sim}25cm^2/V-s$ and $4{\sim}6{\times}10^{20}$, respectively.

  • PDF

Improvement in the negative bias stability on the water vapor permeation barriers on Hf doped $SnO_x$ thin film transistors

  • Han, Dong-Seok;Mun, Dae-Yong;Park, Jae-Hyeong;Gang, Yu-Jin;Yun, Don-Gyu;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • Recently, advances in ZnO based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). However, the electrical performances of oxide semiconductors are significantly affected by interactions with the ambient atmosphere. Jeong et al. reported that the channel of the IGZO-TFT is very sensitive to water vapor adsorption. Thus, water vapor passivation layers are necessary for long-term current stability in the operation of the oxide-based TFTs. In the present work, $Al_2O_3$ and $TiO_2$ thin films were deposited on poly ether sulfon (PES) and $SnO_x$-based TFTs by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (water vapor transmission rate) characteristics, barrier layer structure was modified to $Al_2O_3/TiO_2$ layered structure. For example, $Al_2O_3$, $TiO_2$ single layer, $Al_2O_3/TiO_2$ double layer and $Al_2O_3/TiO_2/Al_2O_3/TiO_2$ multilayer were studied for enhancement of water vapor barrier properties. After thin film water vapor barrier deposited on PES substrate and $SnO_x$-based TFT, thin film permeation characteristics were three orders of magnitude smaller than that without water vapor barrier layer of PES substrate, stability of $SnO_x$-based TFT devices were significantly improved. Therefore, the results indicate that $Al_2O_3/TiO_2$ water vapor barrier layers are highly proper for use as a passivation layer in $SnO_x$-based TFT devices.

  • PDF

The Hall Measurement and TMA Gas Detection of ZnO-based Thin Film Sensors (ZnO 박막 센서의 TMA 가스 및 Hall 효과 측정)

  • Ryu, Jee-Youl;Park, Sung-Hyun;Choi, Hyek-Hwan;Lee, Myong-Kyo;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.265-273
    • /
    • 1997
  • The TMA gas sensors are fabricated with the ZnO-based thin films grown by a RF magnetron sputtering method. We investigate the surface carrier concentration, Hall electron mobility, electrical resistivity and sensitivity according to temperature variation and TMA gas concentration. The ZnO-based thin film sensors prepared by sputtering in oxygen showed higher surface carrier concentration, higher Hall mobility, higher sensitivity, and lower electrical resistivity than sensors prepared by sputtering in argon. The doping ZnO-based thin film sensors showed the same electrical properties in comparison with nondoping sensors. In case of sputtering on the oxygen gaseous atmosphere, the ZnO-based thin film sensors doped with 4.0 wt.% $Al_{2}O_{3}$, 1.0 wt.% $TiO_{2}$, and 0.2 wt.% $V_{2}O_{3}$ showed the highest surface carrier concentration of $5.95{\times}10^{20}cm^{-3}$, Hall electron mobility of $177\;cm^{2}/V{\cdot}s$, lowest electrical resistivity of $0.59{\times}10^{-4}{\Omega}{\cdot}cm$ and highest sensitivity of 12.1(working temperature, $300^{\circ}C$, TMA gas, 8 ppm).

  • PDF

Application of Al-doped Zinc Oxide for transparent conductive thin film (Al이 첨가된 Zinc Oxide박막의 투명전도막으로서의 응용)

  • 정운조;정용근;유용택
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.693-698
    • /
    • 1995
  • We fabricated Zinc Oxide transparent conductive thin films with 2wt% of A1203 doping using rf magnetron sputtering. And we investigated electrical and optical characteristics of them which were made with conditions ; rf power 60-300W, thickness of film 3000 11000.angs.. Resistivity, carrier concentration and Hall mobility were investigated for electrical characteristics. Transmittance and optical band gap were investigated with Spectrophotometer in the wavelength range between 200-900 nm. As a result, ZnO thin film fabricated with rf power of 180W and thickness of 5000.angs. showed the best properties. At the best condition, the sample has resistivity of 1*10$\^$-4/.ohm.cm and transmittance of 95% in the visible range.

  • PDF