Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.1.95

Temperature-dependent Photoluminescence Study on Aluminum-doped Nanocrystalline ZnO Thin Films by Sol-gel Dip-coating Method  

Nam, Giwoong (Department of Nano Engineering, Inje University)
Lee, Sang-Heon (School of Chemical Engineering, Yeungnam University)
So, Wonshoup (School of Chemical Engineering, Yeungnam University)
Yoon, Hyunsik (Department of Nano Engineering, Inje University)
Park, Hyunggil (Department of Nano Engineering, Inje University)
Kim, Young Gue (Department of Nano Engineering, Inje University)
Kim, Soaram (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Kim, Min Su (Department of Nano Systems Engineering, Center for Nano Manufacturing, Inje University)
Jung, Jae Hak (Department of Nano Engineering, Inje University)
Lee, Jewon (Department of Nano Engineering, Inje University)
Kim, Yangsoo (Department of Nano Engineering, Inje University)
Leem, Jae-Young (Department of Nano Engineering, Inje University)
Publication Information
Abstract
The photoluminescence (PT) properties of Al-doped ZnO thin films grown by the sol-gel dip-coating method have been investigated. At 12 K, nine distinct PL peaks were observed at 2.037, 2.592, 2.832, 3.027, 3.177, 3.216, 3.260, 3.303, and 3.354 eV. The deep-level emissions (2.037, 2.592, 2.832, and 3.027 eV) were attributed to native defects. The near-band-edge (NBE) emission peaks at 3.354, 3.303, 3.260, 3.216, and 3.177 eV were attributed to the emission of the neutral-donor-bound excitons ($D^0X$), two-electron satellite (TES), free-to-neutral-acceptors (e,$A^0$), donor-acceptor pairs (DAP), and second-order longitudinal optical (2LO) phonon replicas of the TES (TES-2LO), respectively. According to Haynes' empirical rule, we calculated the energy of a free exciton (FX) to be 3.374 eV. The thermal activation energy for $D^0X$ in the nanocrystalline ZnO thin film was found to be ~25 meV, corresponding to the thermal dissociation energy required for $D^0X$ transitions.
Keywords
II-VI; Luminescence;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Look, D. C. Mater. Sci. Eng. B 2001, 80, 383.   DOI   ScienceOn
2 Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Science 2001, 292, 1897.   DOI   ScienceOn
3 Hoffman, R. L.; Norris, B. J.; Wager, J. F. Appl. Phys. Lett. 2003, 82, 733.   DOI   ScienceOn
4 Liu, K. W.; Ma, J. G..; Zhang, J. Y.; Lu, Y. M.; Jiang, D. Y.; Li, B. H.; Zhao, D. X.; Zhang, Z. Z.; Yao, B.; Shen, D. Z. Solid-State Electron. 2007, 51, 757.   DOI   ScienceOn
5 Liu, K. W.; Shen, D. Z.; Shan, C. X.; Zhang, J. Y.; Yao, B.; Zhao, D. X.; Lu, Y. M.; Fan, X. W. Appl. Phys. Lett. 2007, 91, 201106.   DOI   ScienceOn
6 Hayamizu, S.; Tabata, H.; Tanaka, H.; Kawai, T. J. Appl. Phys. 1996, 80, 787.   DOI   ScienceOn
7 Anna Selvan, J. A.; Keppner, H.; Shah, A. Mater. Res. Soc. Symp. Proc. 1996, 426, 497.   DOI
8 Deschanvres, J. L.; Bochu, B.; Joubert, J. C. J. Phys. 1993, 4, 485.
9 Messaoudi, C.; Sayah, D.; Abd-Lefdil, M. Phys. Status Solidi 1995, 151, 93.   DOI   ScienceOn
10 O'Brien, P.; Saeed, T.; Knowles, J. J. Mater. Chem. 1996, 6, 1135.   DOI
11 Schuler, T.; Aegerter, M. A. Thin Solid Films 1999, 351, 125.
12 Kamalasanan, M. N.; Chandra, S. Thin Solid Films 1996, 288, 112.   DOI   ScienceOn
13 Jimenez Gonzalez, A. E.; Soto Urueta, J. A. Sol. Energy Mater. Sol. Cells 1998, 52, 345.   DOI   ScienceOn
14 Srikant, V.; Clarke, D. R. J. Appl. Phys. 1998, 83, 5447.   DOI   ScienceOn
15 Goldsmith, S. Surf. Coat. Technol. 2006, 201, 3993.   DOI   ScienceOn
16 Fan, X. M.; Lian, J. S.; Zhao, L.; Liu, Y. H. Appl. Surf. Sci. 2005, 252, 420.   DOI   ScienceOn
17 Jie, J.; Wang, G.; Han, X.; Fang, J.; Xu, B.; Yu, Q.; Liao, Y.; Li, F.; Hou, J. G. J. Crystal Growth 2004, 267, 223.   DOI   ScienceOn
18 Petersen, J.; Brimont, C.; Gallart, M.; Cregut, O.; Schmerber, G.; Gilliot, P.; Honerlage, B.; Ulhaq-Bouillet, C.; Rehspringer, J. L.; Leuvrey, C.; Colis, S.; Slaoui, A.; Dinia, A. Microelectr. J. 2009, 40, 239.   DOI   ScienceOn
19 Pan, X. H.; Jiang, J.; Zeng, Y. J.; He, H. P.; Zhu, L. P.; Ye, Z. Z.; Zhao, B. H.; Pan, X. Q. J. Appl. Phys. 2008, 103, 023708.   DOI   ScienceOn
20 Pfisterer, D.; Sann, J.; Hofmann, D. M.; Plana, M.; Neumann, A.; Lerch, M.; Meyer, B. K. Phys. Stat. Sol. (b) 2006, 243, R1.   DOI   ScienceOn
21 Qiu, J.; Li, X.; He, W.; Park, S.-J.; Kim, H.-K.; Hwang, Y.-H.; Lee, J.-H.; Kim, Y.-D. Nanotechnology 2009, 20, 155603.   DOI   ScienceOn
22 Su, S. C.; Lu, Y. M.; Xing, G. Z.; Wu, T. Superlattice Microst. 2010, 48, 485.   DOI   ScienceOn
23 Ozgur, U.; Alivov, Ya. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Dogan, S.; Avrutin, B.; Cho, S.-J.; Morkoc, H. J. Appl. Phys. 2005, 98, 041301.   DOI   ScienceOn
24 Look, D. C. Mater. Sci. Eng. B 2001, 80, 383.   DOI   ScienceOn
25 Yang, X. D.; Xu, Z. Y.; Sun, Z.; Sun, B. Q.; Ding, L.; Wang, F. Z.; Ye, Z. Z. J. Appl. Phys. 2006, 99, 046101.   DOI   ScienceOn
26 Dietrich, C. P.; Brandt, M.; Lange, M.; Kupper, J.; Bontgen, T.; von Wenckstern, H.; Grundmann, M. J. Appl. Phys. 2011, 109, 013712.   DOI   ScienceOn
27 Shibata, H. Jpn. J. Appl. Phys. 1998, 37, 550.   DOI