• 제목/요약/키워드: Al-Cu alloys

검색결과 262건 처리시간 0.022초

Al-Zn-Mg-Cu 다이캐스팅용 합금의 주조성 및 인장특성에 미치는 Zn 첨가량의 영향 (Effects of Zn Amounts on the Castability and Tensile Properties of Al-Zn-Mg-Cu Alloys for Die Casting)

  • 김기태;양재학;임영석
    • 한국주조공학회지
    • /
    • 제30권4호
    • /
    • pp.137-141
    • /
    • 2010
  • The effects of Zn amounts on the castability and tensile properties of Al-Zn-Mg-Cu alloys were investigated for development of high strength die casting aluminium alloys. Al-Zn-Mg-Cu alloys with 3.5% Zn showed high cast cracking tendency and poor mold filling behaviour. Al-Zn-Mg-Cu alloys with 5wt% Zn and 7wt% Zn had the tensile strengths of 300~400MPa and the elongations of 2~18%. The effect of Zn on the tensile strength of Al-Zn-Mg-Cu alloys was insignificant, but Al-Zn-Mg-Cu alloy with high Zn amount had lower elongation.

Al-Zn-Mg-Cu 합금의 주조성 및 인장특성에 미치는 Mg 및 Cu 첨가량의 영향 (Effects of Mg and Cu Amounts on the Casting Characteristics and Tensile Property of Al-Zn-Mg-Cu Alloys)

  • 김기태;임영석;김정민
    • 한국주조공학회지
    • /
    • 제32권1호
    • /
    • pp.38-43
    • /
    • 2012
  • The effects of Mg and Cu amounts on the casting characteristics and tensile property of Al-Zn-Mg-Cu alloys were investigated for the development of high strength aluminium alloys for gravity mold casting. Increase of copper amounts in Al-6%Zn-3%Mgy% Cu alloys resulted in reduction of the fluidity of these alloys and had little effects on the tensile property of these alloys. Increase of magnesium amounts from 1.0wt% to 3.3wt% in Al-6%Zn-x%Mg-0.5%Cu alloys resulted in reduction of the elongation of these alloys from 12% to 3% and increase of the tensile strength of these alloys from 340MPa to 450MPa, but had little effects on the fluidity of these alloys.

가스분사 분말로부터 고온 압출된 Al-Ni-Mm-(Cu, Fe)합금들의 미세구조 및 기계적 성질 (Microstructure and Mechanical Properties of Al-Ni-Mm-(Cu, Fe) Alloys Hot-Extruded from Gas-Atomized Powders)

  • 김혜성
    • 한국재료학회지
    • /
    • 제16권2호
    • /
    • pp.137-143
    • /
    • 2006
  • The effects of Cu and Fe additions on the thermal stability, microstructure and mechanical properties of $Al_{85}-Ni_{8.5}-Mm_{6.5},\;Al_{84}-Ni_{8.5}-Mm_{6.5}Cu_1,\;Al_{84}-Ni_{8.5}-M_{m6.5}Fe_1$ alloys, manufactured by gas atomization, degassing and hot-extrusion were investigated. Gas atomization, with a wide super-cooled liquid region, allowed the alloy powders to exhibit varying microstructure depending primarily on the powder size and composition. Al hotextruded alloys consisted of homogeneously-distributed fine-grained fcc-Al matrix and intermetallic compounds. A substitution of 1 at.% Al by Cu increased the thermal stability of the amorphous phase and produced alloy microstructure with smaller fcc-Al grains. On the other hand, the same substitution of 1 at.% Al by Fe decreased the stability of the amorphous phase and produced larger fcc-Al grains. The formation of intermetallic compounds such as $Al_3Ni,\;Al_{11}Ce_3\;and\;Al_{11}La_3$ was suppressed by the addition of Cu or Fe. Among the three alloys examined, the highest Vickers hardness and compressive strength were obtained for $Al_{84}-Ni_{8.5}-M_{m6.5}Cu_1$ alloy, and related to the finest fcc-Al grain size attained from increased thermal stability with Cu addition.

초고온용 Zn-Al-Cu계 Pb-free 솔더 합금의 특성 (A Characteristics of Zn-Al-Cu System Pb-free Solder Alloys for Ultra High Temperature Applications)

  • 김성준;나혜성;한태교;이봉근;강정윤
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this study is to investigate the characteristics of pb-free $Zn-(3\~6)\%Al-(1\~6)\%Cu$ solder alloys for ultra high temperature(>573K) which applied to air craft, space satellite, automotive, oil, gas well exploration and data logging of geo-thermal wells. Melting range, solderability, electric resistivity, microstructure and mechanical properties were examined with solder alloys casted in Ar gas atmosphere. $Zn-4\%Al-(1\~3)\%Cu,\;Zn-5\%Al-(2\~4)\%Cu\;and\;Zn-6\%Al-(3\~5)\%Cu$ alloys satisfied the optimum melting range of 643 to 673k for ultra high temperature solder. A melting temperature increased with increasing Cu content, but decreased with increasing Al content. The spreadability was improved with increasing hi content. But the content of Cu had no effect on the spreadability. The electric resistivity was lowered with increasing Al and decreasing Cu content. In all Zn-Al-Cu solder alloys, primary dendritic $\varepsilon$ phase(Zn-Cu), dendritic $\eta$ phase(Zn-Cu-Al), $\alpha(Al-Zn)-\eta$ eutectic and eutectoid phase were observed. The addition of Al increased the volume fraction of eutectic and eutectoid phase and it decreased f phases. Also, the addition of Cu increased slightly the volume fraction of e, the eutectic and eutectoid phases. With increasing total content of Al and Cu, a hardness and a tensile strength were linearly increased, but anelongation was linearly decreased.

상향식 연속주조법에 의한 Al-Cu-Ni 3원합금의 응고조직에 관한 연구 (On the Microstructures of Al-Cu-Ni Ternary Alloys by Upward Continuous Casting)

  • 권기균;이계완
    • 한국주조공학회지
    • /
    • 제10권5호
    • /
    • pp.426-434
    • /
    • 1990
  • Continuous casting of the Al-Cu-Ni ternary eutectic alloys was carried out by the upward continuous casting process. The morphology of the ternary eutectic growth and the stability of solid-liquid interface were investigated under various growth conditions. It was possible to get the planar solid-liquid interface at the condition of $G_L/R=3.59{\times}10^3^{\circ}C\;sec/mm^2$ in Al-Cu-Ni ternary eutectic alloys. In Al-rich, Ni-rich and Cu-rich hypereutectics of Al-Cu-Ni ternary alloys, primary ${\alpha},\;{\tau}\;and\;{\theta}$ dendrites have grown as the leading phase ahead of the ternary eutectic composites.

  • PDF

고전도성 부품용 Al-Fe-Zn-Cu합금의 물성 및 주조성 (Properties and Casting Capabilities of Al-Fe-Zn-Cu Alloys for High Conductivity Parts)

  • 윤호섭;김정민;박준식;김기태;고세현
    • 한국주조공학회지
    • /
    • 제33권6호
    • /
    • pp.242-247
    • /
    • 2013
  • The most widely utilized commercial, aluminum-casting alloys are based on an aluminum-silicon system due to its excellent casting, and good mechanical, properties. Unfortunately, these Al-Si based alloys are inherently poor energy conductors; compared to pure aluminum, because of their high silicon content. This means that they are not suitable for applications demanding high eletrical or thermal conductivity. Therefore, efforts are currently being made to develop new, highly-conductive aluminum-casting alloys containing no silicon. In this research, a number of properties; including potential for castability, were investigated for a number of Al-Fe-Zn-Cu alloys with varying Cu content. As the copper content was increased, the tensile strength of Al-Fe-Zn-Cu alloy tended to increase gradually, while the electrical conductivity was slightly reduced. Fluidity was found to be lower in high-Cu alloys, and susceptibility to hot-cracking was generally high in all the alloys investigated.

치과주조용 Ti-X%Cu(X=2,5,10)합금의 미세조직 및 경도 (Microstructure and Hardness of Ti-X%Cu(X=2,5,10) Alloys for Dental Castings)

  • 정종현
    • 대한치과기공학회지
    • /
    • 제31권3호
    • /
    • pp.9-14
    • /
    • 2009
  • This study evaluated the mechanical properties of Ti-Cu alloys with the hope of developing an alloy for dental casting with better mechanical properties than unalloyed titanium. Ti-Cu alloys with four concentrations of Cu(2,5,10wt%) were made in an argon-arc melting furnace. The microstructure and micro-Vickers hardness were determined. X-ray diffraction pattern test was performed on the polished specimens. The microstructure of 2%Cu and 5%Cu alloys are shown acicular ${\alpha}Ti$ phase formed on the surfaces of previously formed $\beta$grains. The 10%Cu alloys has essentially a eutectoid structure; this structure includes lamella of ${\alpha}Ti$ and $Ti_2Cu$ phase that transformed from ${\alpha}Ti$ at the eutectoid temperature. The micro-Vickers hardness of CP Ti specimens was significantly(p<0.05) lower than that of any of the other alloys. Among the Ti-Cu alloys, the 10%Cu alloys exhibited a significantly(p<0.05) higher hardness value. but lower than that of Ti-6%Al-4%V alloy. From these results, it was concluded that new alloys for dental castings should be designed as Ti-Cu based alloys if other properties necessary for dental castings were obtained.

  • PDF

금속 3D 프린팅 적층 제조 공정 기반 Al-Si-Cu-Mg 합금 조합 실험 (3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys)

  • 송용욱;김정준;박수원;최현주
    • 한국분말재료학회지
    • /
    • 제29권3호
    • /
    • pp.233-239
    • /
    • 2022
  • Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.

Fe과 Si의 첨가가 주조용 고강도 Al-Cu-Mn-Ti-Zr-Cd 합금의 시효경화거동에 미치는 영향 (Effects of Fe and Si Additions on the Ageing Behaviors for High Strength Al-Cu-Mn-Ti-Zr-Cd Casting Alloys)

  • 김철효;이정무;김경현;김인배
    • 한국주조공학회지
    • /
    • 제24권1호
    • /
    • pp.45-51
    • /
    • 2004
  • Fe and Si are common impurity elements in the aluminum alloys. In this investigation, the effects of the addition of Fe and Si on the age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd casting alloys were examined through hardness measurements, calorimetric techniques and observation of the transmission electron microscopy. The addition of Fe depresses the formation of GPII and ${\theta}'$, and thus retards the peak aging time and reduces the peak hardness of the Al-Cu-Mn-Ti-Zr-Cd alloys. On the contrary, the addition of Si accelerates the formation of GPII and ${\theta}'$ and thus accelerates age-hardening behaviors of the Al-Cu-Mn-Ti-Zr-Cd alloys.

반고상 온도구역에서 등온유지한 Al-Si, Al-Cu 및 Mg-Al합금의 고상형상 및 조직의 변화 (Variation of Morphology of Solid Particles and Microstructure in Al-Si, Al-Cu and Mg-Al Alloys During Isothermal Heat-Treatment at Semi-Solid Temperatures)

  • 정운재;김기태;홍준표
    • 한국주조공학회지
    • /
    • 제16권6호
    • /
    • pp.556-564
    • /
    • 1996
  • Variation of shape and size of solid particles and solute redistribution in Mg-9wt.%Al, AI-4.5wt.% Cu, and AI-7wt.%Si alloys were investigated when they were heated to semi-solid temperatures and held without stirring. In the case of Mg-9wt.% Al and Al-4.5wt.%Cu alloys, the polygonal shaped solid particles were agglomerated with non-uniform distribution, and there were no disappearance of the solid/solid boundary until the end of melting. But in the case of an Al-7wt.%Si alloys, two or three spherical shaped particles were coalesced or separated individually, and the coalesced particles had no solid/solid interface on the contrary to the prevous case. The maximum size of solid particles during isothermal heating at high temperature was smaller than that at lower temperature, but the time required to reach the maximum size at high temperature was shorter than that at lower temperature. The concentrations of main solute atom whose distribution coefficient is lower than 1, decreased in the primary solid particles as the liquid fraction increased, and the gradient of solute concentration was steeper in Mg-9wt.%Al alloy and Al-4.5wt.%Cu alloy than that of Al-7wt.%Si alloy.

  • PDF