Browse > Article
http://dx.doi.org/10.4150/KPMI.2022.29.3.233

3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys  

Song, Yongwook (School of Materials Science and Engineering, Kookmin University)
Kim, Jungjoon (School of Materials Science and Engineering, Kookmin University)
Park, Suwon (School of Materials Science and Engineering, Kookmin University)
Choi, Hyunjoo (School of Materials Science and Engineering, Kookmin University)
Publication Information
Journal of Powder Materials / v.29, no.3, 2022 , pp. 233-239 More about this Journal
Abstract
Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.
Keywords
Aluminium alloys; Additive manufacturing; Combinatorial approach; Mechanical property; Thermal property;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. G. Schultz and X.-D. Xiang: Curr. Opin. Solid State Mater. Sci., 3 (1998) 153.   DOI
2 P. A. Hooper: Addit. Manuf., 22 (2018) 548.   DOI
3 DuckerFrontier, in: T.A. Association (Ed.), (2020).
4 I. Gibson, D. Rosen and B. Stucker: Additive Manufacturing Technologies, Springer, Ney York (2015) 245.
5 A. Langebeck, A. Bohlen, R. Rentsch and F. Vollertsen: Metals, 10 (2020) 579.   DOI
6 X.-D. Xiang, X. Sun, G. Briceho, Y. Lou, K.-A. Wang, H. Chang, W. G. Wallace-Freedman, S.-W. Chen and P. G. Schultz: Science, 268 (1995) 1738.   DOI
7 C. J. Akisin, F. Venturi, M. Bai, C. J. Bennett and T. Hussain: Emergent Mater., 4 (2021) 1569.   DOI
8 A. Sabard and T. Hussain: J. Mater. Sci., 54 (2019) 12061.   DOI
9 T. Yuan, Z. Yu, S. Chen, M. Xu and X. Jiang: J. Manuf. Processes, 49 (2020) 456.   DOI
10 J. Jeon, S. Woo, K. No, Y. Lee, D.-Y. Yang, Y.-J. Kim and H. Choi: Korean J. Met. Mater, 54 (2016) 322.   DOI
11 A. T. Ernst, P. Kerns, A. Nardi, H. D. Brody, A. M. Dongare, S.-W. Lee, V. K. Champagne, S. L. Suib and M. Aindow: Appl. Surf. Sci., 534 (2020) 147643.   DOI
12 S. Ozbilen, A. Unal and T. Sheppard: Oxid. Met., 53 (2000) 1.   DOI
13 Y. Terada, K. Ohkubo and T. Mohri: J. Appl. Phys., 81 (1997) 2263.   DOI
14 G. P. Dinda, A. K. Dasgupta and J. Mazumder: Surf. Coat. Technol., 206 (2012) 2152.   DOI
15 C.-W. Kim, Y.-C. Kim, J.-H. Kim, J.-I. Cho and M.-S. Oh: Korean J. Met. Mater., 56 (2018) 805.   DOI
16 A. D. Prasetya, M. Rifai, Mujamilah and H. Miyamoto: J. Phys. : Conf. Ser., 1436 (2020) 012113.   DOI
17 C. Gao, S. Wolff and S. Wang: J. Manuf. Syst., 60 (2021) 459.   DOI
18 M. Javidani, J. Arreguin-Zavala, J. Danovitch, Y. Tian and M. Brochu: J. Therm. Spray Technol., 26 (2017) 587.   DOI