Browse > Article
http://dx.doi.org/10.3740/MRSK.2006.16.2.137

Microstructure and Mechanical Properties of Al-Ni-Mm-(Cu, Fe) Alloys Hot-Extruded from Gas-Atomized Powders  

Kim, Hye-Sung (Dept. of Materials Engineering, Miryang National University)
Publication Information
Korean Journal of Materials Research / v.16, no.2, 2006 , pp. 137-143 More about this Journal
Abstract
The effects of Cu and Fe additions on the thermal stability, microstructure and mechanical properties of $Al_{85}-Ni_{8.5}-Mm_{6.5},\;Al_{84}-Ni_{8.5}-Mm_{6.5}Cu_1,\;Al_{84}-Ni_{8.5}-M_{m6.5}Fe_1$ alloys, manufactured by gas atomization, degassing and hot-extrusion were investigated. Gas atomization, with a wide super-cooled liquid region, allowed the alloy powders to exhibit varying microstructure depending primarily on the powder size and composition. Al hotextruded alloys consisted of homogeneously-distributed fine-grained fcc-Al matrix and intermetallic compounds. A substitution of 1 at.% Al by Cu increased the thermal stability of the amorphous phase and produced alloy microstructure with smaller fcc-Al grains. On the other hand, the same substitution of 1 at.% Al by Fe decreased the stability of the amorphous phase and produced larger fcc-Al grains. The formation of intermetallic compounds such as $Al_3Ni,\;Al_{11}Ce_3\;and\;Al_{11}La_3$ was suppressed by the addition of Cu or Fe. Among the three alloys examined, the highest Vickers hardness and compressive strength were obtained for $Al_{84}-Ni_{8.5}-M_{m6.5}Cu_1$ alloy, and related to the finest fcc-Al grain size attained from increased thermal stability with Cu addition.
Keywords
Rapid solidification; nano-crystalline materials; $Al-Ni-M_m$; high strength; thermal stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. L. Esttada, J. Duszcyk, J. Mater. Sci., 15, 1381 (1990)
2 Z. C. Xhong, A. L. Greer, Int. J. Non-equilibrium Process, 11, 35 (1998)
3 A. Inoue, K. Nakazato, Y. Kawamura, A. P. Tsai and T. Massumoto, Mater. Trans, JIM, 35, 95 (1994)   DOI
4 S. J. Hong, Ph.D Thesis, Chungnam National University (2001)
5 H. Jones, Mater. Sci. Eng., 5, 1 (1969)   DOI   ScienceOn
6 J. C. Foley, Ph.D. Thesis, University of WisconsinMadison (1980)
7 K. R. Cardoso, A. Garcia Escorial, M. Lieblich and W. J. Botta F, Mater. Sci. Eng., A315, 89 (2001)   DOI   ScienceOn
8 H. S. Kim and S. I. Hong, Acta Mater., 47, 2059 (1999)   DOI   ScienceOn
9 S. J. Hong and B. S. Chun, Mater. Sci. Eng., A348, 262 (2003)   DOI   ScienceOn
10 S. J. Hong, C. Suryanarayana and B. S. Chun, Scr. Mater. 45, 1341(2001)   DOI   ScienceOn
11 Y. Yoshizawa, S. Oguma and K. Yamaauchi, J. Appl. Phys, 64, 6044 (1988)   DOI
12 S. J. Hong, H. S. Kim, C. Suryanarayana and B. S. Chun, Mater. Tran. Tech., 19, 966 (2003)   DOI   ScienceOn
13 Y. H. Kim, A. Inoue and T. Masumoto, Mater. Trans. JIM, 31, 331 (1991)
14 Z. C. Zhong, X. Y. Jiang and A. L. Greer, Mater. Sci. Eng., A226-228, 531 (1997)   DOI   ScienceOn
15 K. Suzuki, N. Kataoka, A. Inoue and T. Masumoto, Mater. Trans. JlM, 31, 743 (1990)   DOI
16 K. Hono, Y. Zhang, A. P. Tsai, A. Inoue and T. Sakurai, Scripta Metall. Mater., 31, 191 (1995)   DOI
17 A. Inoue, M. Yamamoto, H. M. Kimura and T. Masumoto, J. Mater. Sci. Lett., 6, 194 (1987)   DOI
18 A. Inoue, H. Kimura, and S. I. Yamaura, Metals and Materials International, 9, 527 (2003)   DOI   ScienceOn