• Title/Summary/Keyword: Al toxicity

Search Result 145, Processing Time 0.029 seconds

The Acute Toxicity of Liocolae vermiculus Extract in Mice and its Effect on Hepatic Damages induced by $CCl_4$ in Rats (제조 엑기스의 마우스 급성독성(急性毒性) 및 흰쥐의 사염화탄소(四鹽化炭素) 간장장애(肝臟障碍)에 미치는 영향(影響))

  • Chung, Myung-Hyun;Kang, Soo-Chul;Kim, Gyung-Wan
    • Korean Journal of Pharmacognosy
    • /
    • v.22 no.1
    • /
    • pp.36-44
    • /
    • 1991
  • This study was attempted to investigate the acute toxicity of Liocolae vermiculus(Liocola brevitarsis) extract in mice, the effect on GOT, GPT Al.p, LDH activities and level of total cholesterol in serum of $CCl_4-intoxicated$ rats. In acute toxicity test, Liocolae vermiculus extract showed 10% mortality at 2,000 mg/kg, p.o. and at 1,000 mg/kg, i.p.. The Liocolae verculus extract caused a remarkable decrease in serum transaminase as well as Al.p activities in $CCl_4-intoxicated$ rats at $300{\sim}1,000{\;}mg/kg$ dosage ranges. The activities of -LDH and the level of total cholesterol were significantly decreased in all sample-treated group, when compared with the control group. The body weight decreased, and the liver and spleen weight increased in $CCl_4-intoxicated$ rats were significantly recovered by the administration of the extracts.

  • PDF

Pulmonary Toxicity Assessment of Aluminum Oxide Nanoparticles via Nasal Instillation Exposure (비강내 점적 노출을 통한 산화 알루미늄 나노입자의 폐독성 평가)

  • Kwon, Jung-Taek;Seo, Gyun-Baek;Lee, Mimi;Kim, Hyun-Mi;Shim, Ilseob;Jo, Eunhye;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.1
    • /
    • pp.48-55
    • /
    • 2013
  • Objective: The use of nanoparticle products is expected to present a potential harmful effect on consumers. Also, the lack of information regarding inhaled nanoparticles may pose a serious problem. In this study, we addressed this issue by studying pulmonary toxicity after nasal instillation of Al-NPs in SD rats. Methods: The animals were exposed to Al-NPs at 1 mg/kg body weight (low dose), 20 mg/kg body weight (medium dose) and 40 mg/kg body weight (high dose). To determine pulmonary toxicity, bronchoalveolar lavage (ts.AnBAL) fluid analysis and histopathological examination were conducted in rats. In addition, cell viability was investigated at 24 hours after the treatment with Al-NPs. Results: BAL fluid analysis showed that total cells (TC) count and total protein (TP) concentrations increased significantly in all treatment groups, approximately two to three times. Also, lactate dehydrogenase (LDH) and cytokines such as TNF-alpha and IL-6 dose-dependently increased following nasal instillation of Al-NPs. However, polymorphonuclear leukocytes (PMNs) levels showed no significant changes in a dose dependant manner in BAL fluid. In the cytotoxicity analysis, the treatment of Al-NPs significantly and dose-dependently induced cell viability loss (20 to 30%) and damage of cell membrane (5 to 10%) in rat normal lung epithelial cells (L2). Conclusions: Our results suggest that inhaled Al-NPs in the lungs may be removed quickly by alveolar macrophages with minimal inflammatory reaction, but Al-NPs have the potential to affect lung permeability. Therefore, extensive toxicity evaluations of Al-NPs are required prior to their practical application as consumer products.

Growth Inhibition of Cucumber by Absorbing Excess Al at Low Soil pH (강한 산성토양에서 Al의 과잉 흡수에 의한 오이 생육장해 양상)

  • Kim, Yoo-Hak;Kim, Myung Sook;Kang, Seong Soo;Lee, Hyeong Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.925-927
    • /
    • 2012
  • On-site diagnosis applied to soil having a symptom of yellowing and whitening in cucumber leaf and stem. Soil pH determined 4.2 by methods of on-site analysis and 4.5 by soil test analysis. High aluminum in soil solution extracted with water saturation was detected. Leaf and stem tissue were abundant in Al content but not in Ca. Also, N content of leaf and stem was low compared to normal N ranges. This symptom of cucumber assumed to be from the Al and nitrous acid gas toxicity by low soil pH and Eh. Conclusionally, symptom in leaf and stem of cucumber was alleviated and cucumber normally recovered during cultivation period by applying calcium hydroxide solution to correct soil pH up to 6.5. These results showed that low soil pH resulted in aluminum toxicity and N deficiency to plant growth in on-site farming.

Evaluation of the Inhibitory Effect of Cu2+, Al3+ and Zn2+ on the Activated Sludge (Cu2+, Al3+, Zn2+이 활성슬러지에 미치는 저해영향 평가)

  • Kim, Chang-Gyu;Kim, Yo-Yong;Park, Ik-Beom;Song, Jin-Ho;Nam, Woo-Kyong;Han, Song-Hee;Kim, Bok-Jun;Oh, Jo-Gyo
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.87-93
    • /
    • 2015
  • In this study, the inhibitory effect of toxic metals was investigated on the activated sludge of the municipal sewage treatment plant. The allowable concentration of toxic metals was also estimated for the stable operation of the biological treatment process. The single and mixture toxicity of $Cu^{2+}$, $Al^{3+}$ and $Zn^{2+}$ were evaluated for the activated sludge microorganisms. As a result, nitrifying microorganisms were more susceptible than heterotrophic microorganisms. $IC_{10}$ (Inhibition Concentration of 10%) of $Cu^{2+}$, $Al^{3+}$ and $Zn^{2+}$ for the nitrifying microorganisms was 3 mg/L, 7 mg/L and 25 mg/L, respectively. The mixture toxicity showed three times more sensitive than the single toxicity. The concentrations of $Cu^{2+}$, $Al^{3+}$ and $Zn^{2+}$ to minimize the inhibitory effect on organic matter removal and nitrification in batch experiments were found to be 1.3 mg/L, 2.5 mg/L and 6.3 mg/L.

An R package UnifiedDoseFinding for continuous and ordinal outcomes in Phase I dose-finding trials

  • Pan, Haitao;Mu, Rongji;Hsu, Chia-Wei;Zhou, Shouhao
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.4
    • /
    • pp.421-439
    • /
    • 2022
  • Phase I dose-finding trials are essential in drug development. By finding the maximum tolerated dose (MTD) of a new drug or treatment, a Phase I trial establishes the recommended doses for later-phase testing. The primary toxicity endpoint of interest is often a binary variable, which describes an event of a patient who experiences dose-limiting toxicity. However, there is a growing interest in dose-finding studies regarding non-binary outcomes, defined by either the weighted sum of rates of various toxicity grades or a continuous outcome. Although several novel methods have been proposed in the literature, accessible software is still lacking to implement these methods. This study introduces a newly developed R package, UnifiedDoseFinding, which implements three phase I dose-finding methods with non-binary outcomes (Quasi- and Robust Quasi-CRM designs by Yuan et al. (2007) and Pan et al. (2014), gBOIN design by Mu et al. (2019), and by a method by Ivanova and Kim (2009)). For each of the methods, UnifiedDoseFinding provides corresponding functions that begin with next that determines the dose for the next cohort of patients, select, which selects the MTD defined by the non-binary toxicity endpoint when the trial is completed, and get oc, which obtains the operating characteristics. Three real examples are provided to help practitioners use these methods. The R package UnifiedDoseFinding, which is accessible in R CRAN, provides a user-friendly tool to facilitate the implementation of innovative dose-finding studies with nonbinary outcomes.

Cation Deficiencies in Needles and Fine Roots of Pitch Pine in Seoul Metropolitan Area (首都圈地域에서 리기다소나무 잎과 잔뿌리 속의 陽이온 부족)

  • Rhyu, Tae-Cheol;Kim, Kee-Dae;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.17 no.3
    • /
    • pp.277-286
    • /
    • 1994
  • The contents of major elements were determined in current-year and previous-year needles and fine roots of pitch pine (Pinus yzgida) at 33 sites in Seoul and its vicinity. Contrary to Ca and Al in needles, N, P, Mg and K contents in current-year needles were higher than those in previous-year needles. The N, P, K and Al contents in current-year needles in Seoul were not significantly different from those in rural areas. In contrast, Ca and Mg contents in needles in Seoul were significantly lower than those in suburbs and rural areas. The N /Ca and N /Mg ratios in needles in urban Seoul were higher than those in rural areas. Mg contents in fine roots in soil of 0-5 cm depth increased along with distance from the center of Seoul, while Al contents in fine root in soil of 5-10 cm depth decreased along with distance from the center of Seoul. Al contents in fine roots in soil layer in Seoul and suburbs were higher than those in rural areas. Al contents in fine roots in litter layer were 1 /3 - 1 /2 times lower than those in soil layer for all areas. A1 content in fine roots in deep soil was higher than that in top soil. Therefore growth decline of pitch pine in Seoul and suburbs was thought to be caused by Ca and Mg deficiency in plant tissues and Al toxicity to fine roots. Abnormal vertical distribution of fine roots of pitch pine in Seoul and its vicinity were interpreted as the result of growth reduction of fine roots by Al toxicity in deep layer of acid soil.

  • PDF

A Fire Risk Assessment of Substrate for Fire Resistant Painted (난연도료를 도장한 바탕재의 화재 위험성평가)

  • Park Young-Keun;Lee Doo-Hyung;Yoon Myung-O;Hyun Seong-Ho
    • Fire Science and Engineering
    • /
    • v.19 no.1 s.57
    • /
    • pp.51-58
    • /
    • 2005
  • In this paper, The experimental materials of painted fire resistant paint on substrate, FRP, PVC, AL and stainless steel that fire resistant paint developed newly were evaluated as the hazard elements : the fire resistibility of the materials, fire spread test of flame, the oxygen index, flammability, the smoke density. the toxicity index from it when it burned. As a result of the experiments, the AL and the stainless steel were passed of fire resistant class 1, the FRP, the AL, and the stainless steel were ignited of fire spread test of flame, all the experimental materials showed about $50\%$ of oxygen index, V-0 of flammability, and 43-338 of maximum smoke density at flaming mode used smoke density chamber. Also, they showed that the toxicity index of combustion products were 0.57-1.12.

Aluminum toxicity-induced alterations of root proteome in wheat seedlings

  • Oh, Myeong Won;Roy, Swapan Kumar;Cho, Kun;Cho, Seong-Woo;Park, Chul-Soo;Chung, Keun-Yook;Choi, Jong-Soon;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.127-127
    • /
    • 2017
  • Aluminum is the most abundant metallic element in the Earth's crust and considered as the most limiting factor for plant productivity in acidic soils. The inhibition of root growth is recognized as the primary effect of Al toxicity. Seeds of wheat cv. Keumkang (Korean cultivar) were germinated on petridish for 5 days and then transferred hydroponic apparatus which was treated with $0{\mu}M$ $AlCl_3$ (control), $100{\mu}M$ $AlCl_3$ and $150{\mu}M$ $AlCl_3$ for 5 days. The length of roots, shoots and fresh weight of wheat seedlings were decreased under aluminum stress. The concentrations of $K^+$, $Mg^{2+}$ and $Ac^{2+}$ were decreased whereas $Al^{3+}$ and $P_2O_5{^-}$ concentration was increased under aluminum stress. Using confocal microscopy, the fluorescence intensity of aluminum was increased with morin staining. In this study, a proteome analysis was performed to identify proteins, which is responsible to aluminum stress in wheat roots. In 10-day-old seedlings, proteins were extracted from roots and separated by 2-DE, stained by CBB. Using image analysis, a total of 47 differentially expressed protein spots were selected, whereas 19 protein spots were significantly up-regulated such as s-adenosylmethionine, oxalate oxidase, malate dehydrogenase, cysteine synthase, ascorbate peroxidase and 28 protein spots were significantly down-regulated such as heat shock protein 70, o-methytransferase 4, enolase, amylogenin by aluminum stress following protein spots analyzed by LTQ-FTICR mass spectrometry. The results provide the global picture of Al toxicity-induced alterations of protein profiles in wheat roots, and identify the Al toxicity-responsive proteins related to various biological processes that may provide some novel clues about plant Al tolerance.

  • PDF

Size, Shape, and Crystal Structure-dependent Toxicity of Major Metal Oxide Particles Generated as Byproducts in Semiconductor Fabrication Facility (반도체 가공 작업환경에서 부산물로 발생되는 주요 금속산화물의 입자 크기, 형상, 결정구조에 따른 독성 고찰)

  • Choi, Kwang-Min
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.26 no.2
    • /
    • pp.119-138
    • /
    • 2016
  • Objectives: The purpose of this study is to review size, shape, and crystal structure-dependent toxicity of major metal oxide particles such as silicon dioxide, tungsten trioxide, aluminum oxide, and titanium dioxide as byproducts generated in semiconductor fabrication facility. Methods: To review the toxicity of major metal oxide particles, we used various reported research and review papers. The papers were searched by using websites such as Google Scholar and PubMed. Keyword search terms included '$SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$) toxicity', 'health effects $SiO_2$(or $WO_3$ or $Al_2O_3$ or $TiO_2$). Additional papers were identified in references cited in the searched papers. Results: In various cell lines and organs of human and animals, cytotoxicity, genotoxicity, hepatoxicity, fetotoxicity, neurotoxicity, and histopathological changes were induced by silicon dioxide, tungsten trioxide, aluminium oxide, and titanium dioxide particles. Differences in toxicity were dependent on the cell lines, organs, doses, as well as the chemical composition, size, surface area, shape, and crystal structure of the particles. However, the doses used in the reported papers were higher than the possible exposure level in general work environment. Oxidative stress induced by the metal oxide particles plays a significant role in the expression of toxicity. Conclusions: The results cannot guarantee human toxicity of the metal oxide particles, because there is still a lack of available information about health effects on humans. In addition, toxicological studies under the exposure conditions in the actual work environment are needed.

Effects of Aluminum Solution Treatment on the Growth of Forsythia koreana Cuttings (알루미늄용액 처리가 개나리삽수의 생장에 미치는 영향)

  • 김갑태
    • Korean Journal of Environment and Ecology
    • /
    • v.6 no.1
    • /
    • pp.9-11
    • /
    • 1992
  • To examine aluminum toxicity on woody plants, Forsythia koreana cuttings were grown in the aluminum solution and ground water(pH 6.75). Aluminum solution were prepared 1.0, 2.5 and 5.0mM aluminum potassium sulfate, dilulted with ground water. Shoot growth, leaf number, leaf injury and leaf chlorophyll content were measured and compared among the treatments. In all growth-related characters(shoot growth. leaf number, leaf injury and leaf chlorophyll content), differences among the treatments were highly significant. Forsythia koreana cuttings were severely stressed in aluminum solution more than 1.0mM concentration.

  • PDF