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Abstract
Phase I dose-finding trials are essential in drug development. By finding the maximum tolerated dose (MTD)

of a new drug or treatment, a Phase I trial establishes the recommended doses for later-phase testing. The primary
toxicity endpoint of interest is often a binary variable, which describes an event of a patient who experiences
dose-limiting toxicity. However, there is a growing interest in dose-finding studies regarding non-binary out-
comes, defined by either the weighted sum of rates of various toxicity grades or a continuous outcome. Although
several novel methods have been proposed in the literature, accessible software is still lacking to implement these
methods. This study introduces a newly developed R package, UnifiedDoseFinding, which implements three
phase I dose-finding methods with non-binary outcomes (Quasi- and Robust Quasi-CRM designs by Yuan et al.
(2007) and Pan et al. (2014), gBOIN design by Mu et al. (2019), and by a method by Ivanova and Kim (2009)).
For each of the methods, UnifiedDoseFinding provides corresponding functions that begin with next that
determines the dose for the next cohort of patients, select , which selects the MTD defined by the non-binary
toxicity endpoint when the trial is completed, and get oc, which obtains the operating characteristics. Three real
examples are provided to help practitioners use these methods. The R package UnifiedDoseFinding, which is
accessible in R CRAN, provides a user-friendly tool to facilitate the implementation of innovative dose-finding
studies with nonbinary outcomes.

Keywords: Phase I dose-finding, toxicity grades, quasi-likelihood, continual reassessment method
Bayesian optimal interval design

1. Introduction

Phase I trials are conducted to seek a new drug’s toxic effect on patients through the identification of
an optimal dose, called the maximum tolerated dose (MTD), which maximizes its therapeutic effect
while maintaining a tolerable toxic effect. The estimated MTD and the administered schedule of a new
drug or treatment determined in a phase I clinical trial will then be employed in phase II and III clinical
trials for efficacy and therapeutic effects to be assessed. There are three categories of designs for phase
I clinical trials; namely, algorithm-based (e.g., 3+3 design in Storer, 1989), model-based (e.g., the
continual reassessment method (CRM) design by O’Quigley et al., 1990), and model-assisted designs
(for instance, the Bayesian optimal interval (BOIN) design in Liu and Yuan, 2015).

In all the above-mentioned designs, a binary indicator of dose-limiting toxicity (DLT) (if a DLT
occurs during the observation window for toxicity assessment) is adopted to describe the toxicity
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outcomes. In spite of its ease of application, there are unavoidable limitations in using DLT as a
binary indicator. First, patients often have multiple toxicities, but in using DLT as an assessment, all
other toxicities of a patient are ignored except for the worst one. For example, the National Cancer
Institute-Common Terminology Criteria for Adverse Events (NCI-CTCAE) (2003) is often used as
an instrument for grading adverse events. For each adverse event, the severity is graded on a scale
from 0 to 5, with grade 0 being no toxicity and grade 5 being death. In real cancer trials, a tremendous
amount of toxicity data is collected and reported for each patient. The binary toxicity summaries using
DLTs disregard lower grade toxic effects, which individually are less severe than dose-limiting, but in
aggregate they can be concerning. Second, binary toxicity summaries also do not differentiate between
types of toxic effects. Third, the definition of DLT varies by study (Dent et al., 1996). Last, there is an
additional impetus for the non-binary toxicity response due to the emergence of molecularly targeted
agents and immunotherapies that has changed the landscape of many oncology drug developments.
These new therapeutic agents appear more likely to induce multiple low or moderate grade toxicities
rather than DLTs (Brahmer et al., 2010). To account accurately for the side effects of these agents, it
is also important to incorporate the grade of toxicity in dose-finding and decision making. For some
of these agents, the side effects are often less frequent and severe; and the dose of interest in this
type of dose-finding trial may aim to evaluate the biological activity of an agent, often measured as a
continuous variable, rather than the binary toxicity. Because DLT might not be reached, a continuous
biomarker endpoint might be a better primary endpoint in a phase I trial that uses a cytostatic agent.
Examples include a measure of target inhibition or pharmacokinetic endpoints such as plasma drug
concentrations that correlate with biological activity (Le Tourneau et al., 2009) or the percentage
inhibition of an enzyme (Plummer et al., 2008).

Several methods for incorporating grade toxicity or a non-binary toxicity endpoint have been
proposed in recent years for phase I dose-finding trials, e.g., Ivanova and Kim (2009), Bekele and
Thall (2004), Yuan et al. (2007), Meter et al. (2011), and Mu et al. (2019). Among them, Bekele
and Thall (BT method for short) applied severity weights to a soft tissue sarcoma trial using five types
of DLTs. Physicians assigned a severity weight on a common numeric scale for each type of toxicity
to each observed patient, and the sum of these weights over the five toxicity types was called the
total toxicity burden (TTB). The authors then considered a hypothetical collection of cohorts with a
variety of different possible outcomes. They Quasi-CRM design, proposed by Yuan et al. (2007),
also adopted severity weights to convert toxicity grades to numerical scores and incorporated these
scores into the CRM design. The recommended dose for the next patient is the dose level with an
estimated score (the equivalent toxicity score) closest to the target score, which was obtained from
a pre-specified toxicity profile at the MTD. This Quasi-CRM method has been demonstrated to be
superior to the BT method, and it has a higher probability for recommending the optimal dose in
further studies. Pan et al. (2014) further extended the Quasi-CRM and proposed the Robust Quasi-
CRM by utilizing a parallel of skeletons. Without specifying any skeleton, Ivanova and Kim (2009)
presented a different model-based design approach in which the target dose is defined as the dose at
which the outcome of interest is equal to some pre-specified value. By minimizing the normalized
difference between the current dose and the target dose, this new design was applied to trials with
continuous outcomes, ordinal toxicity outcomes, and binary outcomes. In the school of model-assisted
designs, Mu et al. (2019) generalized the BOIN design and proposed a unified approach that can deal
with binary and non-binary outcomes. Additional measures to incorporate ordinal toxicity grades into
dose-finding also include the toxicity burden score (TBS) by Lee et al. (2012), which summarizes
toxicity by using a weighted sum, where the severity weights were estimated via regression using
historical data, and the total toxicity profile (TTP) by Ezzalfani et al. (2013), which is computed as
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the Euclidean norm of the severity weights.
Although these novel designs for non-binary outcomes have been developed in recent years, there

has been very limited usage of these methods in real practices. One obstacle is the lack of acces-
sible software. For instance, among the above-introduced methods, only the design by Emily et al.
(2011), which incorporated toxicity grades using a continuation ratio (CR) model in the likelihood-
based CRM, has been developed into an R package ordcrm for implementing the associated method.
Therefore, there is a need to include various representative methods in one freely available and user-
friendly package that is available for trial design and design comparison, which is the aim of this
manuscript.

In the UnifiedDoseFinding package, three methods are included: the Quasi-CRM and Robust
Quasi-CRM designs (Yuan et al., 2007, Pan et al., 2014), the gBOIN design – a model-assisted unified
design (Mu et al., 2019), and the model-based unified approach in Ivanova and Kim (2009).

As pointed out by one reviewer, for capturing a more comprehensive profile of toxicity in a dose-
finding study, with the exception of the above approach by re-defining the binary-based DLT, there
are other ways that exist for capture, for example, the late-onset toxicity and accumulative toxicity.
For example, one work by Zhang et al. (2018) mentions the concept of relative dose intensity as
another alternative endpoint. Another way is to refine the DLT beyond the 1st cycle, and Paoletti et
al. (2014) provides some examples, especially when there is a developed R package phase1RMD that
takes into consideration the longitudinal toxicity endpoint in multiple cycles. Furthermore, health-
related quality of life as an endpoint in oncology phase I trials has been reviewed by Fiteni et al.
(2019) since some oncology diseases can be ‘cured’, e.g., some types of pediatric ALL/AML. Finally,
the current paradigm of phase I methods ignores the PK information, though PK also contains or is
correlated with toxicity per se, for example, as in a recent trial shown in Muehz (2017).

The paper is organized as follows. We concisely introduce these three designs in Section 2. In
Section 3, we show how to use the package to implement the trial in practice and conduct simulations
for protocol development or research purposes. Section 4 provides a real trial use of this package.
The conclusion is found at the end in Section 5.

2. Methods

This section briefly reviews the phase I design methods proposed by Yuan et al. (2007) and Pan et
al. (2014), Mu et al. (2017), and Ivanova and Kim (2009), respectively. These designs were proposed
for dose-finding trials, which use non-binary toxicity outcomes.

2.1. Quasi-CRM method

Yuan et al. (2007) proposed the concept of “equivalent toxicity score” (ETS) to measure the relative
severity by incorporating different toxicity grades in the dose-finding procedure. Rather than using a
conventional 0–1 rule for a severe adverse event (AE) or above (i.e., AE grade ≥ 3) to define a binary
toxicity outcome, an ordinal score is assigned to AEs at different grades. At each dose level, DLT is
assessed by the weighted average score using a corresponding toxicity profile that is defined by an AE
grade. For example, a medical oncologist can pre-assign the scores of 0, 0.5, 1, and 1.5 to AE grades
0/1, 2, 3, and 4, respectively. In the meantime, if the following toxicity profile is considered tolerable
for the MTD, such that 49% grade 0 and grade 1, 18% grade 2, 23% grade 3, and 10% grade 4, the
target ET score for dose-finding is then obtained by the weighted sum over all the grades, that is,

R0 = 0.49 × 0 + 0.18 × 0.5 + 0.23 × 1.0 + 0.10 × 1.5 = 0.47.
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For the dose-finding trial, the above target ET score replaces the conventional DLT target. Indeed,
the conventional definition of DLT often just considers ≥ 3 grades toxicity. For the toxicity profile
using the ET score, it is essentially a more familiar concept for medical oncologists and a more
consistent target for toxicity.

From the above, we can define a normalized ET score as the continuous endpoint (more precisely
we can call it quasi-binary, which is explained in Section 3.2) used for the Quasi-CRM design. Sup-
pose that n patients have been tested sequentially at dose levels d(1), d(2), . . . , d(n) with corresponding
ET scores s(1), s(2), . . . , s(n). The normalized ET score is then defined as,

s?(i) =
s(i)
smax

, i = 1, 2, . . . , n,

where smax < ∞ ensures s?(i) ∈ [0, 1], i = 1, 2, . . . , n.
The normalized scores can be viewed as fractional events and modeled using the Quasi-Bernoulli

likelihood (Papke and Wooldrige, 1996). If the dose-toxicity model is correctly specified, the quasi-
maximum likelihood estimate (QMLE) will be strongly consistent because the Bernoulli distribution
belongs to the binomial family. If a functional dose-score curve is not assumed, the QMLE will be
equal to the observed average ET score at each dose level. Thereby, the goal of the study is to find the
MTD d0 that is the highest dose level such that the projected normalized ET score is p?s (d0) ≤ p0/smax.

The Quasi-Bernoulli likelihood provides a simple way to incorporate ordinal grades into paramet-
ric models. Yuan et al. (2007) successfully applied it with the CRM for developing the Quasi-CRM.
However, the Quasi-CRM model suffers from the same problem as the CRM model in that the choice
of the skeleton may dramatically affect the performance of the model operating characteristics. Pan
et al. (2014) utilized the Bayesian model selection approach and proposed the Robust Quasi-CRM
model, which inherits the BMA-CRM model proposed by Yin and Yuan (2009) and considers a paral-
lel of skeletons for the Quasi-CRM. The superior performance of the Robust Quasi-CRM model was
also demonstrated by extensive simulation studies conducted by Pan et al. (2014).

Specifically, let (M1, . . . ,MK) be the K models corresponding to each set of prior guesses of
toxicity probabilities {(p11, . . . , p1J), . . . , (pK1, . . . , pKJ)}. The probability of toxicity at dose j in model
Mk(k = 1, . . . ,K) is given by,

πk j(αk) = pexp(α)
k j , j = 1, . . . , J

which is based on the kth skeleton (pk1, . . . , pkJ). Let pr(Mk) be the prior probability and model Mk

is the true model; that is, the probability that the kth skeleton (pk1, . . . , pkJ) matches the true dose-
toxicity curve. If there is no preference a priori for any single model in the CRM case, then one can
assign equal weights to the different skeletons by simply setting pr(Mk) = 1/K. At a certain stage of
the trial, which is based on the observed data D = {(n j, y j), j = 1, . . . , J}, denotes the quasi-Bernouli
likelihood function under model Mk by L(D|αk,Mk).

The posterior model probability for Mk is given by,

pr(Mk |D) =
L(D|Mk)pr(Mk)∑K
1 L(D|Mi)pr(Mi)

,

where L(D|Mk) is the marginal likelihood of model Mk, L(D|Mk) =
∫

L(D|αk,Mk) f (αk |Mk)dαk, and
αk is the power parameter in the CRM associated with model Mk, and f (αk |Mk) is the prior distribution
of αk under model Mk.
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As the posterior model probability transformed the prior opinion for each model Mk through con-
sideration of data D, a Bayesian model selection approach can be naturally developed to estimate
toxicity probabilities and base decision on dose assignment. Specifically, at each point of the decision
making for dose assignment, we select the model with the highest posterior probability, i.e., model,

k? = arg max
k∈1,...,K

(pr(MK |D)),

and use this model to make inference and dose assignment.
Then, after n patients, the quasi-posterior estimation of the toxicity probability for dose j under

the kth skeleton will be updated by

π̂k j =

∫
pexp(α)

k j
L(D|αk,Mk) f (αk |Mk)∫

L(D|αk,Mk) f (αk |Mk)dαk
dαk. (2.1)

We require early termination of a trial if the lowest dose is too toxic, as noted by

pr (πk?1(αk? ) > φ|Mk? ,D) > 90%.

The functions get oc RQ CRM(), next RQ CRM(), and select mtd RQ CRM() in the Unified
DoseFinding package implement the dose-finding methods described in this section. When a sin-
gle skeleton is used, these functions apply the Quasi-CRM design while a multiple-skeletons setting
applies the Robust Quasi-CRM approach.

2.2. gBOIN method

The gBOIN design by Mu et al. (2019) is a model-assisted design to generalize the BOIN design by
Liu and Yuan (2015), which accommodates various existing toxicity grade scoring systems.

Assume there are J specified doses d1 < · · · < dJ under investigation. Let y denote the toxicity
outcome, which is either binary or quasi-binary (e.g., DLT or ETS) or continuous (e.g., TTB, TBS
or TTP). Define µ = E(y) and µ j = E(y|d j). Given the dose d j, the distribution of y belongs to the
exponential family,

f (y|d j) = h(y) exp
{
η(θ j)T (y) − A(θ j)

}
,

where,

• θ j = µ j, η(θ j) = log{µ j/(1 − µ j)}, A(θ j) = − log(1 − µ j) , T (y) = y, and h(y) = 1, if y follows a
binomial distribution;

• θ j = (µ j, σ
2
j ), η(θ j) = µ j/σ

2
j , A(θ j) = µ2

j/(2σ
2
j ), T (y) = y, and h(y) = (1/

√
πσ) exp{−y2/(2σ2

j )}, if y
follows a normal distribution.

Let φ0 denote the target value of µ for dose finding. Specifically, for binary or quasi-binary toxic-
ity endpoints, φ0 is the target DLT probability; for continuous endpoints, φ0 is the targeted value of
TTB, TBS or TTP. Denote µ̂i the sample mean of the observed toxicity data at dose level di. For the
interval-based design, dose transition decisions are made by comparing µ̂ j with the decision bound-
aries, λe(d j, n j, φ0) and λd(d j, n j, φ0). Specifically, if µ̂ j < λe(d j, n j, φ0), then escalate to the higher
dose level j + 1, and if µ̂ j > λd(d j, n j, φ0), de-escalate to th thene lower dose level j − 1; otherwise
retain the same dose level j. The selection of the decision boundaries λe(d j, n j, φ0) and λd(d j, n j, φ0)



426 Haitao Pan, Rongji Mu, Chia-Wei Hsu, Shouhao Zhou

is critical because these two parameters essentially determine operating characteristics of a design.
Let the decisions of retainment, escalation and de-escalation (each based on the current dose level)
be denoted as R, E and D, respectively and let R denote the decisions that are complementary to R
(i.e., R includes E and D); and E and D denote the decisions that are complementary to E and D,
respectively. Following the same rule in Liu and Yuan (2015) that obtains optimal decision boundaries
under some criteria, the gBOIN considers three point hypotheses H0 : µ j = φ0, H1 : µ j = φ1, and
H2 : µ j = φ2; and minimizes an incorrect decision probability α,

α = Prob(H0)Prob
(
R|H0

)
+ Prob (H1) Prob

(
E |H1

)
+ Prob (H2) Prob

(
D|H2

)
, (2.2)

where φ1 is a value deemed subtherapeutic such that dose escalation is warranted, and φ2 is a value
deemed overly toxic such that dose de-escalation is required. Taking a noninformative prior, i.e.,
Prob(H0) = Prob(H1) = Prob(H2) = 1/3, and minimizing the incorrect decision probability α in
equation (2.2), the decision boundaries can be obtained as,

λ∗e =
A(ϑ1) − A(ϑ0)
η(ϑ1) − η(ϑ0)

, λ∗d =
A(ϑ2) − A(ϑ0)
η(ϑ2) − η(ϑ0)

.

Specifically, when y follows a Bernoulli or quasi-Bernoulli distribution, we have ϑk = φk, A(ϑk) =

− log(1 − φk), η(ϑk) = log{φk/(1 − φk)}. Then,

λ∗e =
log 1−φ1

1−φ0

log φ0(1−φ1)
(1−φ0)φ1

, λ∗d =
log 1−φ0

1−φ2

log φ2(1−φ0)
(1−φ2)φ0

, (2.3)

which are exactly the same as boundaries provided by the original BOIN design (Liu and Yuan, 2015).
When y follows a normal distribution, we have ϑk = (φk, σ

2
j ), A(ϑk) = φ2

k/(2σ
2
j ), η(ϑk) = φk/σ

2
j . Then,

λ∗e =
φ0 + φ1

2
, λ∗d =

φ0 + φ2

2
. (2.4)

Based on the above decision boundaries, the gBOIN design is summarized as follows:

(a) Patients in the first cohort are treated at the lowest dose level or at a prespecified dose level.

(b) At the current dose level j, a dose is assigned to the next cohort of patients,

• if µ̂ j ≤ λ
∗
e, then escalate the dose level to j + 1,

• if µ̂ j ≥ λ
∗
d, then de-escalate the dose level to j − 1,

• otherwise, if, i.e., λ∗e < µ̂ j < λ
∗
d, then retain the same dose level, j.

(c) This process is continued until the maximum sample size is reached or the trial is terminated
because of excessive toxicities.

The optimal decision boundaries (λ∗e, λ
∗
d) are free of d j and n j, which means that the same pair of

boundaries can be used throughout the trial no matter which dose is the current dose or how many
patients have been treated at the current dose.

The functions get oc gBOIN Continuous(), next gBOIN Continuous(), and select mtd g
BOIN Continuous() in the UnifiedDoseFinding package implement the gBOIN design with con-
tinuous outcomes.
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2.3. Ivanova design

Ivanova and Kim (2009) proposed a unified dose-finding approach for studies with the target dose
being defined as the dose at which the outcome of interest is equal to some specified value. This
design can apply to trials with a variety of response types, such as, continuous outcomes, ordinal
toxicity outcomes, and binary outcomes.

Let D = {d1, . . . , dK} denote the set of ordered dose levels selected for a trial. A subject’s response
at dk has a distribution function F(·; µk, σ

2
k), where (µ1, . . . , µK and (σ2

1, . . . , σ
2
K) are vectors of means

and variances corresponding to D. This design assumed that the mean response was monotone in dose.
The goal is to find dose dm ∈ D such that µm = µ∗. If there is no such dose, the goal is to find dose
dm with µm closest to µ∗, where µ∗ is the target value and dm is the target dose. Subjects are assigned
sequentially starting with the lowest dose. The total number of subjects is equal to M. Let n(t) =

(n1(t), . . . , nK(t)) be the number of subjects at each of the K doses right after subject t, t ≤ M, has been
assigned, that is, n1(t)+ · · ·+nK(t) = t. Let Y ji be the observation from the ith subject assigned to dose
d j, i = 1, . . . , n j(t). Let Ȳ j(n j(t)) =

∑n j(t)
i=1 Y ji/n j(t) and s2

j (n j(t) =
∑n j(t)

i=1 {Y ji − Ȳ j(n j(t))}2/(n j(t) − 1) be
the sample mean and variance computed from all available observations at d j, n j(t) = 2, 3, . . .. Define
T j(n j(t)), n j(t) = 2, 3, . . . , to be the t-statistic

T j(n j(t)) =
Ȳ j(n j(t)) − µ∗

s j(n j(t))/
√

n j(t)
.

Suppose the most recent subject t was assigned to dose d j. The next subject is assigned as follows:

(i) if T j(n j(t)) ≤ −∆, the next subject is assigned to dose d j+1;

(ii) if T j(n j(t)) ≥ ∆, the next subject is assigned to dose d j−1;

(iii) if −∆ < T j(n j(t)) < ∆, the next subject is assigned to dose d j.

Here, ∆ > 0 is called the design parameter. The isotonic estimates of the mean response at the end
of a trial was used for target dose selection.

The authors recommend a start-up rule of using the above algorithm with at least two subjects to
any untried dose before the dose can be escalated. The authors also introduced how to compute the
distribution for subject allocation n(M), which is the number of subjects assigned to each dose by the
time M subjects have been assigned. If F is the normal distribution function, the distribution of n(M)
can be computed based on the joint distribution of sequential t-statistics.

The last step is to choose the design parameter ∆. If ∆ is small, the current dose is repeated if the
average response is very close to the target and changed otherwise. A narrow window (−∆,∆) results
in a small probability of repeating a dose even if the true mean value of the quantity of interest at that
dose is equal µ∗. The optimal value for ∆ is to maximize the number of subjects assigned to the target
dose. Though the optimal ∆ may depend on a dose-response assumption, the authors recommend
∆ = 1 as a reasonable choice used in simulation studies; that is, the design parameters can be chosen
before the trial, which is similar to the BOIN design. However, the authors suggest it might be worth
fine-tuning the design parameters during the trial as information about the spacing between doses and
the variance of the outcomes becomes available, especially for continuous outcomes. If the optimal
criterion is to maximize the proportion of trials that select the target dose correctly, the extensive
simulations show that the same, or nearly the same parameter ∆ works.
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The functions get oc Ivanova continuous(), next Ivanova continuous(), and select m
td Ivanova continuous() in the UnifiedDoseFinding package implement the Ivanova dose-
finding method for the continuous outcome described in this section. Similar functions ending with
binary can be used for the dose-finding with binary endpoints.

3. R functions

Package UnifiedDoseFinding implements all the dose-finding methods described in Section 2.
For an ongoing study, the accumulated patient data can be used in the functions beginning with
next · · · to determine the next recommended dose. At the end of a trial, the functions beginning with
select · · · will report the dose level for the target score. All functions beginning with get oc · · ·
can be used for simulating various scenarios to develop clinical protocols or for research purposes.

The package UnifiedDoseFinding is available on the CRAN archive and can be installed through
the URL https://cran.r-project.org/web/packages/UnifiedDoseFinding. Once the pack-
age is installed, it can be loaded with the command:

> l i b r a r y ( U n i f i e d D o s e F i n d i n g )

In the remainder of this section, we present the R functions available in the package along with the
required input parameters and examples. A more extensive demonstration and documentation can be
accessed from the on-line user manual on the CRAN server by installing the package or by accessing
it directly from within the R console.

3.1. Determine the dose for the next cohort of new patients

The functions beginning with next · · · give the recommended dose to administer to the next cohort
of patients or the final estimated MTD if applied at the end of the trial.

(1) Next dose for the Quasi-CRM design
> n e x t RQ CRM( t a r g e t , n , y , dose . c u r r , s c o r e , s k e l e t o n )

This function applies the Quasi-CRM and Robust-Quasi-CRM designs for the ETS-defined MTD
target, which is essentially a quasi-binary endpoint essentially. Among the input arguments: target
is for the toxicity target score, n is for the number of patients treated at each dose level, y is the
toxicity score at each dose level, dose.curr is the current dose level, score is the weighted vector for
ordinal toxicity levels introduced in the Quasi-CRM design section, skeleton is a skeleton for the
Quasi-CRM design or a matrix with multiple-skeletons for the Robust-Quasi-CRM design.

An example for using this function is shown below:
> ### Implement Robust−Quasi−CRM d e s i g n ( Pan { \ i t e t a l . } 2014) wi th pre − s p e c i f y i n g 3 s k e l e t o n s
> t a r g e t <− 0 . 4 7
> s c o r e <− c ( 0 , 0 . 5 , 1 , 1 . 5 )
> p1 <− c ( 0 . 1 1 , 0 . 2 5 , 0 . 4 0 , 0 . 5 5 , 0 . 7 5 , 0 . 8 5 )
> p2 <− c ( 0 . 0 5 , 0 . 1 0 , 0 . 1 5 , 0 . 2 5 , 0 . 4 0 , 0 . 6 5 )
> p3 <− c ( 0 . 2 0 , 0 . 4 0 , 0 . 6 0 , 0 . 7 5 , 0 . 8 5 , 0 . 9 5 )
> s k e l e t o n s <− r b i n d ( p1 , p2 , p3 )
> n <− c ( 3 , 3 , 3 , 9 , 3 , 0 )
> y <− c ( 0 , 0 , 1 , 1 . 3 3 3 3 3 3 , 3 , 0 )
>
> ## Example t o g e t t h e ET s c o r e 1 on dose 3
> ## Assume t h r e e p a t i e n t s t h e i r c o r r e s p o n d i n g s c o r e on t h e dose 3 i s
> ## 0 . 5 , 0 . 5 and 0 . 5 . Then we c a l c u l a t e ET s c o r e as t h i s :
> ## ( 0 . 5 + 0 . 5 + 0 . 5 ) / 1 . 5 = 1
>
> ## Example t o g e t t h e ET s c o r e 1 .333333 on dose 4
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> ## Assume n i n e p a t i e n t s t h e i r c o r r e s p o n d i n g s c o r e on t h e dose 4 i s
> ## 0 , 0 , 0 , 0 , 0 , 0 , 0 . 5 , 0 . 5 and 1 . Then we c a l c u l a t e ET s c o r e as t h i s :
> ## (0 + 0 + 0 + 0 + 0 + 0 + 0 . 5 + 0 . 5 + 1) / 1 . 5 = 1 .333333
>
> n e x t RQ CRM( t a r g e t = t a r g e t , n = n , y = y , dose . c u r r = 5 ,
+ s c o r e = s c o r e , s k e l e t o n = s k e l e t o n s )
[ 1 ] 4

(2) Next dose for the gBOIN design
> n e x t gBOIN c o n t i n u o u s ( t a r g e t , n , y , d )

This function applies to the gBOIN design for the continuous endpoints for quasi-binary end-
points. Among the input arguments, target is for the toxicity target score, n is the number of patients
treated at each dose level, y is the toxicity score at each dose level, and d is the current dose.

An example for using this function is shown below:
> t a r g e t <− 1 . 4 7
> n <− c ( 3 , 3 , 3 , 9 , 0 , 0 )
> y <− c ( 0 . 1 9 5 1 2 6 5 , 1 .5434317 , 2 . 1 9 6 7 343 , 13 .9266838 , 0 , 0 )
> d <− 4
> n e x t gBOIN C o n t i n u o u s ( t a r g e t = t a r g e t , n = n , y = y , d = d )
[ 1 ] 4

There are also two functions, next gBOIN TB() and next QuasiBOIN(), for the gBOIN de-
sign that accept the continuous endpoints (e.g., TBS) or quasi-binary endpoints (e.g., ETS) as input
parameters, respectively. For example:

> t a r g e t <− 3 .344
> n <− c ( 3 , 9 , 6 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )
> y <− c ( 5 . 5 , 2 6 . 9 5 , 2 5 . 3 , 0 , 0 , 0 , 0 , 0 , 0 , 0 )
> d <− 2
> n e x t gBOIN TB( t a r g e t = t a r g e t , n = n , y = y , d = d )
[ 1 ] 2

> t a r g e t <− 0 . 4 7 / 1 . 5
> n <− c ( 3 , 3 , 6 , 3 , 3 , 0 )
> y <− c ( 0 , 0 , 1 . 3 3 3 3 3 3 , 0 , 1 , 0 )
> d <− 5
> n e x t QuasiBOIN ( t a r g e t = t a r g e t , n = n , y = y , d = d )
[ 1 ] 5

(3) Next dose for the Ivanova design
> n e x t Ivanova c o n t i n u o u s ( t a r g e t , eps , c r e sp , n , d )

Given the relatively inferior performance of the Ivanova design for ordinal and binary outcomes,
this function applies the Ivanova design for the continuous endpoints. Among the input arguments:
target is for the target toxicity score, eps is for the decision criterion, that is, the design parameter
∆ in section 2.3, c resp is for the observed continuous values for each dose level, n is for the number
of patients enrolled at each dose level, and d is the current dose level.

Now, we show an example of using this function below:
> t a r g e t <− 1 . 4 7
> eps <− 1
> c r e s p <− l i s t ( c ( 0 , 0 .05475884 , 0 .12446843 , 0 . 1 0 1 3 1 9 1 2 ) ,
+ c ( 0 , 0 .471696 2 , 0 . 2 7 92428 , 0 . 3 2 9 6 5 7 5 ) ,
+ c ( 0 , 0 .393116 8 , 1 . 6 1 16607 , 0 . 1 6 4 2 5 6 1 ) ,
+ c ( 0 , 0 .941002 7 , 1 . 6 0 21326 , 1 .6115235 ,
+ 1 .1735981 , 2 . 5 5 7 5 6 55 , 1 .6513679 , 1 .4269044 ,
+ 0 .8983843 , 2 . 2 2 0 9 5 8 7 ) ,
+ 0 ,
+ 0)
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> n <− c ( 3 , 3 , 3 , 9 , 0 , 0 )
> d <− 4
> n e x t Ivanova c o n t i n u o u s ( t a r g e t = t a r g e t , eps = eps , c r e s p = c re sp ,
+ n = n , d = d )
[ 1 ] 4

The above example shows that a trial has 6 dose levels, the continuous target is 1.47, and at that
moment, there were 3, 3, 3 and 9 patients treated at dose levels 1 ,2, 3, and 4, respectively, with the
current dose level being 4. The recommended design parameter ∆ = 1 was used and when executing
to next Ivanova continuous() function, the Ivanova design recommended de-escalating to dose
level 4 for the next cohort of patients.

3.2. Select the target dose when the trial is completed

The functions beginning with select · · · are used to choose the target dose defined by the continuous
(e.g., TTB) or quasi-binary endpoints (e.g., ETS) at the end of the trial.

(1) Select the target dose for the Quasi-CRM design
> s e l e c t mtd RQ CRM( t a r g e t , n , y , s c o r e , s k e l e t o n )

This function applies Quasi-CRM and Robust-Quasi-CRM designs for the ETS-defined MTD
target. Among the input arguments: target is for the toxicity target score, n is for the number of
patients treated at each dose level, y is the toxicity score at each dose level, score is the weighted
vector for ordinal toxicity levels introduced in the Quasi-CRM design section, skeleton is a skeleton
for the Quasi-CRM design or a matrix with multiple-skeletons for the Robust-Quasi-CRM design.

An example for using this function is shown below:
> t a r g e t <− 0 . 4 7
> s c o r e <− c ( 0 , 0 . 5 , 1 , 1 . 5 )
> p1 <− c ( 0 . 1 1 , 0 . 2 5 , 0 . 4 0 , 0 . 5 5 , 0 . 7 5 , 0 . 8 5 )
> p2 <− c ( 0 . 0 5 , 0 . 1 0 , 0 . 1 5 , 0 . 2 5 , 0 . 4 0 , 0 . 6 5 )
> p3 <− c ( 0 . 2 0 , 0 . 4 0 , 0 . 6 0 , 0 . 7 5 , 0 . 8 5 , 0 . 9 5 )
> s k e l e t o n s <− r b i n d ( p1 , p2 , p3 )
> n <− c ( 3 , 3 , 3 , 9 , 3 , 0 )
> y <− c ( 0 , 0 , 1 , 1 . 3 3 3 3 3 3 , 3 , 0 )
>
> ## Example t o g e t t h e ET s c o r e 1 on dose 3
> ## Assume t h r e e p a t i e n t s t h e i r c o r r e s p o n d i n g s c o r e on t h e dose 3 i s
> ## 0 . 5 , 0 . 5 and 0 . 5 . Then we c a l c u l a t e ET s c o r e as t h i s :
> ## ( 0 . 5 + 0 . 5 + 0 . 5 ) / 1 . 5 = 1
>
> ## Example t o g e t t h e ET s c o r e 1 .333333 on dose 4
> ## Assume n i n e p a t i e n t s t h e i r c o r r e s p o n d i n g s c o r e on t h e dose 4 i s
> ## 0 , 0 , 0 , 0 , 0 , 0 , 0 . 5 , 0 . 5 and 1 . Then we c a l c u l a t e ET s c o r e as t h i s :
> ## (0 + 0 + 0 + 0 + 0 + 0 + 0 . 5 + 0 . 5 + 1) / 1 . 5 = 1 .333333
>
> s e l e c t mtd RQ CRM( t a r g e t = t a r g e t , n = n , y = y , s c o r e = s c o r e ,
+ s k e l e t o n = s k e l e t o n s )
[ 1 ] 4

(2) Select the target dose for the gBOIN design
The following function applies to the continuous outcomes of the gBOIN design.

> s e l e c t mtd gBOIN c o n t i n u o u s ( t a r g e t , np t s , n tox )

Among the input arguments: target is for the toxicity target score, npts is for the number of
patients treated at each dose level, ntox is the toxicity score at each dose level.

An example for using this function is shown below:
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> t a r g e t <− 1 . 4 7
> n <− c ( 3 , 3 , 3 , 9 , 0 , 0 )
> y <− c ( 0 . 1 9 5 1 2 6 5 , 1 .5434317 , 2 . 1 9 6 7 343 , 13 .9266838 , 0 , 0 )
> s e l e c t mtd gBOIN c o n t i n u o u s ( t a r g e t = t a r g e t , n p t s = n , n tox = y )
[ 1 ] 4

There are also two functions, select mtd gBOIN TB() and select mtd QuasiBOIN(), for the
gBOIN design that accept the continuous (e.g., ETS) as input parameters. The examples are not shown
here, but can be found in the package.

(3) Select the target dose for the Ivanova design
> s e l e c t mtd Ivanova c o n t i n u o u s ( t a r g e t , c r e sp , n )

This function applies the Ivanova design for continuous outcomes. The input arguments are similar
to the corresponding next function: target is for the target toxicity score, c resp is for observed
continuous values for each dose level, n is for the number of patients treated at each dose level.

Now, we show an example of using this function below:
> t a r g e t <− 1 . 4 7
> c r e s p <− l i s t ( c ( 0 , 0 .05475884 , 0 .12446843 , 0 . 1 0 1 3 1 9 1 2 ) ,
+ c ( 0 , 0 .471696 2 , 0 . 2 7 92428 , 0 . 3 2 9 6 5 7 5 ) ,
+ c ( 0 , 0 .393116 8 , 1 . 6 1 16607 , 0 . 1 6 4 2 5 6 1 ) ,
+ c ( 0 , 0 .941002 7 , 1 . 6 0 21326 , 1 .6115235 ,
+ 1 .1735981 , 2 . 5 5 7 5 6 55 , 1 .6513679 , 1 .4269044 ,
+ 0 .8983843 , 2 . 2 2 0 9 5 8 7 ) ,
+ 0 ,
+ 0)
> n <− c ( 3 , 3 , 3 , 9 , 0 , 0 )
> s e l e c t mtd Ivanova c o n t i n u o u s ( t a r g e t = t a r g e t , c r e s p = c re sp , n = n )
$ d s e l e c t
[ 1 ] 4

$n
[ 1 ] 3 3 3 9 0 0

3.3. Generate operating characteristics

The functions beginning with get oc · · · are used to obtain the operating characteristics of the dose-
finding design. This function should be used to assess trial performance for the design of clinical
studies.

(1) Obtain the OC for the Quasi-CRM design
> g e t oc RQ CRM( ptox , s k e l e t o n s , t a r g e t , s c o r e , c o h o r t s i z e , n c o h o r t ,
s t a r t . dose = 1 , s eed = 100)

This function applies Quasi-CRM and Robust-Quasi-CRM designs for the equivalent toxicity
score defined MTD target. Among the input arguments, ptox is true toxicity probability at each dose
level, target is for the toxicity target score, cohortsize is the cohort size, ncohort is the number
of cohorts, score is the weighted vector for ordinal toxicity levels introduced in the Quasi-CRM de-
sign section, skeleton is a skeleton for the Quasi-CRM design or a matrix with multiple-skeletons
for the Robust Quasi-CRM design, start.dose is the starting dose level, and seed is the seed setting
for replicating the simulating results.

An example of using this function is shown as below:
> ### S c e n a r i o 1 i n Yuan { \ i t e t a l . } ( 2 0 0 7 ) and Pan { \ i t e t a l . } ( 2 0 1 4 )
> t a r g e t <− 0 . 4 7
> s c o r e <− c ( 0 , 0 . 5 , 1 , 1 . 5 )
> c o h o r t s i z e <− 3
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> n c o h o r t <− 10
> n t r i a l <− 10
>
> p tox <− m a t r i x ( nrow = 4 , n c o l = 6)
> p tox [ 1 , ] <− c ( 0 . 8 3 , 0 . 7 5 , 0 . 6 2 , 0 . 5 1 , 0 . 3 4 , 0 . 1 9 )
> p tox [ 2 , ] <− c ( 0 . 1 2 , 0 . 1 5 , 0 . 1 8 , 0 . 1 9 , 0 . 1 6 , 0 . 1 1 )
> p tox [ 3 , ] <− c ( 0 . 0 4 , 0 . 0 7 , 0 . 1 1 , 0 . 1 4 , 0 . 1 5 , 0 . 1 1 )
> p tox [ 4 , ] <− c ( 0 . 0 1 , 0 . 0 3 , 0 . 0 9 , 0 . 1 6 , 0 . 3 5 , 0 . 5 9 )
> ### s p e c i f y one s k e l e t o n ( Quasi−CRM d e s i g n )
> p1 <− c ( 0 . 1 1 , 0 . 2 5 , 0 . 4 0 , 0 . 5 5 , 0 . 7 5 , 0 . 8 5 )
>
> g e t oc RQ CRM( p tox = ptox , s k e l e t o n s = p1 , t a r g e t = t a r g e t ,
+ s c o r e = s c o r e , c o h o r t s i z e = c o h o r t s i z e ,
+ n c o h o r t = n c o h o r t , n t r i a l = n t r i a l )
$ s e l p e r c e n t
[ 1 ] 0 0 40 60 0 0

$ n p t s d o s e
[ 1 ] 3 . 3 4 . 8 1 0 . 5 1 0 . 5 0 . 9 0 . 0
> ### s p e c i f y t h r e e s k e l e t o n s ( Quasi−CRM d e s i g n )
> p1 <− c ( 0 . 1 1 , 0 . 2 5 , 0 . 4 0 , 0 . 5 5 , 0 . 7 5 , 0 . 8 5 )
> p2 <− c ( 0 . 0 5 , 0 . 1 0 , 0 . 1 5 , 0 . 2 5 , 0 . 4 0 , 0 . 6 5 )
> p3 <− c ( 0 . 2 0 , 0 . 4 0 , 0 . 6 0 , 0 . 7 5 , 0 . 8 5 , 0 . 9 5 )
> s k e l e t o n s <− r b i n d ( p1 , p2 , p3 )
>
> g e t oc RQ CRM( p tox = ptox , s k e l e t o n s = s k e l e t o n s , t a r g e t = t a r g e t ,
+ s c o r e = s c o r e , c o h o r t s i z e = c o h o r t s i z e ,
+ n c o h o r t = n c o h o r t , n t r i a l = n t r i a l )
$ s e l p e r c e n t
[ 1 ] 0 0 30 60 10 0

$ n p t s d o s e
[ 1 ] 3 . 3 4 . 8 7 . 5 1 2 . 6 1 . 8 0 . 0

(2) Obtain the OC for the gBOIN design
The following function is for a continuous outcome in the gBOIN design.

> g e t oc gBOIN c o n t i n u o u s ( t a r g e t , c t r u e , n c o h o r t , c o h o r t s i z e , n t r i a l , s t a r t d o s e = 1)

Among the input arguments: target is for the toxicity target score, c true is for the true mean
value of the continuous measure, ncohort is the number of cohorts, the cohort size is the cohort
size, ntrial is the number of simulated trials, startdose is the starting dose level, and, seed is the
seed setting for replicating the simulating results.

An example for using this function is shown below:

> t a r g e t <− 1 . 4 7
> c t r u e <− c ( 0 . 1 1 , 0 . 2 5 , 0 . 9 4 , 1 . 4 7 , 2 . 3 8 , 2 . 4 0 )
> n c o h o r t <− 10
> c o h o r t s i z e <− 3
> n t r i a l <− 4000
> g e t oc gBOIN c o n t i n u o u s ( t a r g e t = t a r g e t , c t r u e = c t r u e ,
+ n c o h o r t = n c o h o r t , c o h o r t s i z e = c o h o r t s i z e ,
+ n t r i a l = n t r i a l )
$ s e l p e r c e n t
[ 1 ] 0 .000 0 .000 13 .550 79 .125 6 . 7 2 5 0 .600

$ n p t s d o s e
[ 1 ] 3 .00000 3 .22050 8 .35650 12 .29325 2 .91000 0 .21975

Using the gBOIN design, there are also two functions, get oc gBOIN TB() and ge oc QuasiBOIN(),
for the gBOIN design to accept the continuous outcomes or ordinal-converted, quasi-binary outcomes
as input parameters. We omitted the examples here, but they can be found in the package by running
the sample code.
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(3) Obtain the OC for the Ivanova design

> g e t oc Ivanova c o n t i n u o u s ( t a r g e t , p tox , n c o h o r t , c o h o r t s i z e ,
n t r i a l , s t a r t d o s e = 1)

This function applies the Ivanova design for continuous outcomes. The input arguments: target
is for the target toxicity score, ptox is the true mean value of the continuous measure, ncohort
is the number of cohorts, cohortsize is the cohort size, ntrial is the number of simulated trials,
startdose is the starting dose level, and seed is the seed setting for replicating the simulating results.

Now, we show an example of using this function below:

> t a r g e t <− 1 . 4 7
> p tox <− c ( 0 . 1 1 , 0 . 2 5 , 0 . 9 4 , 1 . 4 7 , 2 . 3 8 , 2 . 4 0 )
> n c o h o r t <− 10
> c o h o r t s i z e <− 3
> n t r i a l <− 4000
> g e t oc Ivanova c o n t i n u o u s ( t a r g e t = t a r g e t , p tox = ptox , n c o h o r t = n c o h o r t ,
+ c o h o r t s i z e = c o h o r t s i z e , n t r i a l = n t r i a l )
$ s e l p e r c e n t
[ 1 ] 0 .000 0 .000 16 .625 72 .450 9 . 6 2 5 1 .300

$ n p t s d o s e
[ 1 ] 3 .0000 3 .2055 8 .3700 12 .4770 2 .7165 0 .2310

This function returns the operating characteristics of the Ivanova design as a list that includes: (1)
selection percentage at each dose level ($selpercent), (2) the number of patients treated at each dose
level ($nptsdose).

4. A trial example

Example 1. In this illustrative example, we used the UnifiedDoseFinding package to apply the
gBOIN design in the setting of an on-going phase I/II study at St.Jude Children’s Research Hos-
pital. In its phase I part, the primary objective is to evaluate the safety of combining intravenous
atezolizumab, every three weeks with daily oral cyclophosphamide, pharmacokinetic (PK)-guided
sorafenib, and IV bevacizumab once every 3 weeks in children, adolescents and young adults (AYA)
with relapsed or refractory solid malignancies. Instead of a conventional dose-finding trial for the
MTD, pharmacokinetic outcomes (PK) of this study will be obtained and the targeted dose is defined
to be the area under the curve (AUC) between 20 and 55 hrg/mL until day 21 of the course. Phase
II used a two-stage design and the endpoint is the response rate. Here, we show how to employ the
gBOIN design to design the phase I part of this study.

From the derived boundaries of (2.4) in Section 2.2, it is known that we can use recommended
default φ1 and φ2, or choose values for them based on the specific clinical scenario.

In this study, the AUC target has been specified by a fixed interval. Though different from the
setting in the original gBOIN design, we adopted the following procedures so that the gBOIN design
method can still be properly applied. First, we will take two targets φ`0 = 20 hrg/mL and φr

0 = 55
hrg/mL that correspond to the left and right endpoints of this interval, respectively. Second, we can
take, H1 : φ1 = 0.8 ∗ φ`0 hrg/mL and H2 : φ2 = 1.2 ∗ φr

0 hrg/mL. In other words, if the value of AUC
is less than φ1 hrg/mL, the dose would be safe, and if AUC is greater than φ2 hrg/mL, the dose would
be over-toxic; otherwise, the dose is very likely to fall into the target interval. Therefore, the decision
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Figure 1: Table 1 from Ivanova and Kim (2009).

boundaries can be calculated accordingly,

λ∗e =
φ`0 + φ1

2
=

20 + 16
2

= 18,

λ∗d =
φr

0 + φ2

2
=

55 + 66
2

= 60.5.

By calculating µ̂ j, the averaged AUC at the current treated dose level j, we can assign a dose to
the next cohort of patients as follows:

• if µ̂ j ≤ λ
∗
e, then escalate the dose level to j + 1,

• if µ̂ j ≥ λ
∗
d, then escalate the dose level to j − 1,

• otherwise, if, i.e., λ̂∗e < µ̂ j < λ
∗
d, retain the current dose level j.

The decision of dose escalation and de-escalation involves only a simple comparison of the sample
mean of the AUC with two pre-specified dose escalation and de-escalation boundaries. Although the
gBOIN design with the non-binary DLT endpoint was eventually not used for this study, it provides
an example of how to implement the gBOIN design approach for a continuous outcome.

Example 2. Now we show how to use the Ivanova method to conduct a real study. Data of this
study was originally from Friedman et al. (1998), and we use Figure 1 (Table 1 from Ivanova and
Kim (2009)) which shows the data of AGT activity and t-statistic that is used to make decisions for
each dose cohort, and show how this trial was conduct. We see that there are four dose levels: 40
mg/m2, 60 mg/m2, 80 mg/m2, and 100 mg/m2. The goal is to find a dose with AGT activity equal to
5 fmol/mg of protein, which has a target continuous value of 5.

It should be noted that in this study, the AGT activity was believed to be decreasing with dose, and
therefore, in the following codes, we take the negative sign for the target and response values. This
is because the decision rules based on calculated t-statistics by Ivanova’s method are to escalate if the
t-statistic is small while to de-escalate if the t-statistic is large for this example.

We now show how to use the replicate, next Ivanova continuous, to replicate the decisions
shown in Figure 1 (Table 1 from Ivanova and Kim (2009)). At a Dose 1 of 40 mg/m2, the observed
ACG activity measurements from the first three patients are (y11, y12, y13) = (26.35, 42.00, 15.00).
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From the below output, we see that the next recommended dose is Dose 2, and thus, the decision is to
escalate.
> t a r g e t<− −5
> eps <− 1
> c r e s p<− l i s t ( c ( −26.35 , −42 , −15))
> n <− c ( 3 , 0 , 0 , 0 )
> d <− 1
> n e x t Ivanova c o n t i n u o u s ( t a r g e t = t a r g e t , eps = eps , c r e s p = c re sp ,
+ n = n , d = d )
[ 1 ] 2

Then, the study enrolled three patients at a Dose 2 of 60 mg/m2. If the observed ACG activity
measurements from these three patients are (y21, y22, y23) = (23.00, 13.50, 10.83), then we see from
the below output, the next recommended dose is Dose 3, and thus, the decision is to escalate.
> c r e s p<− l i s t ( c ( −26.35 , −42 , −15) , c ( −23 , −13 .5 , −10 .83) )
> n <− c ( 3 , 3 , 0 , 0 )
> d <− 2
> n e x t Ivanova c o n t i n u o u s ( t a r g e t = t a r g e t , eps = eps , c r e s p = c re sp ,
+ n = n , d = d )
[ 1 ] 3

The rest of decisions made from Figure 1 can be see evidently by the following codes and outputs.
Enroll three patients at a Dose 3 of 80 mg/m2 with the observed three ACG activity measurements

being (y31, y32, y33) = (11.70, 9.03, 5.00), and thus, the decision is to escalate to Dose 4.
> c r e s p<− l i s t ( c ( −26.35 , −42 , −15) , c ( −23 , −13 .5 , −10 .83) , c ( −11 .7 , −9 .03 , −5) )
> n <− c ( 3 , 3 , 3 , 0 )
> d <− 3
> n e x t Ivanova c o n t i n u o u s ( t a r g e t = t a r g e t , eps = eps , c r e s p = c re sp ,
+ n = n , d = d )
[ 1 ] 4

Enroll three patients at a Dose 4 of 100 mg/m2 with the observed three ACG activity measurements
being (y41, y42, y43) = (4.07, 5.00, 8.70), and thus, the decision is to stay at Dose 4.
> c r e s p<− l i s t ( c ( −26.35 , −42 , −15) , c ( −23 , −13 .5 , −10 .83) , c ( −11 .7 , −9 .03 , −5) , c ( −4 .07 , −5 , −8 .7 ) )
> n <− c ( 3 , 3 , 3 , 3 )
> d <− 4
> n e x t Ivanova c o n t i n u o u s ( t a r g e t = t a r g e t , eps = eps , c r e s p = c re sp ,
+ n = n , d = d )
[ 1 ] 4

Continue to enroll the three patients at Dose 4 and the observed three ACG activity measurements
are (y44, y44, y44) = (2..50, 4.07, 6.13), then the decision is to still stay at Dose 4, etc.
> c r e s p<− l i s t ( c ( −26.35 , −42 , −15) , c ( −23 , −13 .5 , −10 .83) , c ( −11 .7 , −9 .03 , −5) ,
+ c ( −4 .07 , −5 , −8 .7 , −2 .50 , −4 .07 , −6 .13 ) )
> n <− c ( 3 , 3 , 3 , 6 )
> d <− 4
> n e x t Ivanova c o n t i n u o u s ( t a r g e t = t a r g e t , eps = eps , c r e s p = c re sp ,
+ n = n , d = d )
[ 1 ] 4

Example 3. We show how to use the Quasi-CRM method for a phase I trial of a pre-surgical gem-
citabine with an external beam radiation (EBR) for patients with soft tissue sarcoma in a real trial
background. This trial was introduced in Bekele and Thall (2004). In this study, each patient received
a fixed dose of 50 cGy external beam radiation and 1 of 10 doses of gemcitabine, 100, 200, ... or
1,000 mg/m2. There were five types of toxicity considered: myelosuppression, dermatitis, liver, nau-
sea/vomiting, and fatigue. In this example, we only focused on the myelosuppression toxicity as an
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example. As noted in Bekele and Thall (2004), only the first 11 patients were real; the remaining 25
were hypothetical. Therefore, we also hypothesized the observed ET scores for the patients.

To be specific in this trial, for the myelosuppression toxicity with fever or not, there were five
grades from grade 0 to 5. Grades 0 and 1 are combined into one grade and denoted as grade 01. From
discussions with the clinical investigator, the targeted toxicity profile for grade 01, 2, 3, and 4 is 0.39,
0.28, 0.20, and 0.13, respectively. If we assign the toxicity scores of 0, 0.5, 1, and 1.5 to the four
toxicity grades, we can obtain the target ET score for this study as: 0.39 × 0 + 0.28 × 0.5 + 0.20 × 1 +

0.13 × 1.5 = 0.535. This target ET score is equivalent to a target DLT rate of 33% in a conventional
binary toxicity case if the investigator will dichotomize the multiple toxicities and only attribute ≥
grade 3 as the DLT.

To use the R package, we first elicit a set of 3 skeletons using the getprior(.) function from
the dfcrm package as shown below.
> l i b r a r y ( dfcrm )
> p1 <− g e t p r i o r ( h a l f w i d t h = 0 . 1 0 , t a r g e t = 0 . 3 3 , nu = 4 , n l e v e l =6)
> p2 <− g e t p r i o r ( h a l f w i d t h = 0 . 1 0 , t a r g e t = 0 . 3 3 , nu = 5 , n l e v e l =6)
> p3 <− g e t p r i o r ( h a l f w i d t h = 0 . 1 0 , t a r g e t = 0 . 3 3 , nu = 6 , n l e v e l =6)
>
> p1 ; p2 ; p3
[ 1 ] 0 .00286723 0 .03466833 0 .14506007 0 .33000000 0 .52905862 0 .69377785
[ 1 ] 3 .736508 e−05 2 .867230 e−03 3 .466833 e−02 1 .450601 e−01 3 .300000 e−01 5 .290586 e−01
[ 1 ] 1 .949679 e−08 3 .736508 e−05 2 .867230 e−03 3 .466833 e−02 1 .450601 e−01 3 .300000 e−01

Scores of 0, 0.5, 1, and 1.5 corresponding to grade 0/1, 2, 3, and 4 were assigned by the investiga-
tor.
s c o r e <− c ( 0 , 0 . 5 , 1 , 1 . 5 )

The trial enrolled 3 patients for the first cohort at dose 1. After the first treatment course (4 weeks),
the 1st and 2nd patients experienced grade 0 toxicity, and the 3rd patient experienced grade 1 toxicity.
Thus, the computed normalized score value for the dose was (0 + 0 + 0)/1.5 = 0 since either toxicity
grade 0 or 1 has the pre-assigned score value of 0. Therefore, the observed data at dose 1 can be input
like below:
n <− c ( 3 , 0 , 0 , 0 , 0 , 0 )
y <− c ( 0 , 0 , 0 , 0 , 0 , 0 )

Then, we can use the below code to find the dose transition decision.
> n e x t RQ CRM( t a r g e t = t a r g e t , n = n , y = y , dose . c u r r = 1 ,
+ s c o r e = s c o r e , s k e l e t o n = s k e l e t o n s )
[ 1 ] 2

The decision is to escalate and we enrolled three patients for the 2nd cohort at dose 2. Among these
patients, the 4th and 6th patients had experienced grade 0 toxicity, and the 5th patient had experienced
grade 1 toxicity. Thus, the normalized score was (0 + 0 + 0)/1.5 = 0. The codes for the dose transition
decision-making are as follows:
> n <− c ( 3 , 3 , 0 , 0 , 0 , 0 )
> y <− c ( 0 , 0 , 0 , 0 , 0 , 0 )
> n e x t RQ CRM( t a r g e t = t a r g e t , n = n , y = y , dose . c u r r = 2 ,
+ s c o r e = s c o r e , s k e l e t o n = s k e l e t o n s )
[ 1 ] 3

From the above output, the study escalated to dose 3 and among the three patients, the 7th patient
had experienced grade 1 toxicity and the 8th and 9th patients had experienced grade 2 toxicity. Thus,
the computed normalized score was (0 + 0.5 + 0.5)/1.5 = 0.6666667. The following codes show the
dose transition decision making:
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> n <− c ( 3 , 3 , 3 , 0 , 0 , 0 )
> y <− c ( 0 , 0 , 0 .6666667 , 0 , 0 , 0 )
> n e x t RQ CRM( t a r g e t = t a r g e t , n = n , y = y , dose . c u r r = 3 ,
+ s c o r e = s c o r e , s k e l e t o n = s k e l e t o n s )
[ 1 ] 4

The decision is to escalate to dose 4. For the fourth cohort of the three patients, the 10th patient
had experienced grade 2 toxicity, the 11th experienced grade 1 toxicity and the 12th experienced grade
3 toxicity. The computed normalized score was (0.5 + 0 + 1)/1.5 = 1. The following codes show the
dose transition decision making.
> n <− c ( 3 , 3 , 3 , 3 , 0 , 0 )
> y <− c ( 0 , 0 , 0 .6666667 , 1 , 0 , 0 )
> n e x t RQ CRM( t a r g e t = t a r g e t , n = n , y = y , dose . c u r r = 4 ,
+ s c o r e = s c o r e , s k e l e t o n = s k e l e t o n s )
[ 1 ] 4

The study continued to enroll the fifth cohort and treat patients at dose 4. For the newly enrolled
three patients, the 13th patient had experienced grade 2 toxicity, the 14th experienced grade 3 toxicity
and the 15th experienced grade 1 toxicity. The computed normalized score was (0.5 + 0 + 1 + 0.5 +

1 + 0)/1.5 = 2.
> n <− c ( 3 , 3 , 3 , 6 , 0 , 0 )
> y <− c ( 0 , 0 , 0 .6666667 , 2 , 0 , 0 )
> n e x t RQ CRM( t a r g e t = t a r g e t , n = n , y = y , dose . c u r r = 4 ,
+ s c o r e = s c o r e , s k e l e t o n = s k e l e t o n s )
[ 1 ] 4

This study continued to treat patients at dose 4 and finally stopped the study when 15 patients were
enrolled. To be specific, for the sixth cohort, the 16th patient had experienced grade 1 toxicity, the
17th experienced grade 1 toxicity and the 18th experienced grade 2 toxicity. The computed normalized
score was (0.5 + 0 + 1 + 0.5 + 1 + 0 + 0 + 0 + 0.5)/1.5 = 2.3333333. For the seventh cohort, the
19th patient experienced grade 1 toxicity, the 20th patient experienced grade 3 toxicity and the 21st
patient experienced grade 0 toxicity. The computed normalized score was (0.5 + 0 + 1 + 0.5 + 1 +

0 + 0 + 0 + 0.5 + 0 + 1 + 0)/1.5 = 3. For the eighth cohort, the 22nd patient experienced grade 3
toxicity, the 23rd patient experienced grade 3 toxicity and the 24th experienced grade 4 toxicity. The
computed normalized score was (0.5 + 0 + 1 + 0.5 + 1 + 0 + 0 + 0 + 0.5 + 0 + 1 + 0 + 1 + 1 +

1.5)/1.5= 5.3333333. The following codes show the inputs and outputs based on this information.It
must be noted that 5.3333333 × 1.5/15 = 0.533 is close to our target ET score of 0.535.
> # f o r t h e s i x t h c o h o r t
> n <− c ( 3 , 3 , 3 , 9 , 0 , 0 )
> y <− c ( 0 , 0 , 0 .6666667 , 2 .3333333 , 0 , 0 )
> n e x t RQ CRM( t a r g e t = t a r g e t , n = n , y = y , dose . c u r r = 4 ,
+ s c o r e = s c o r e , s k e l e t o n = s k e l e t o n s )
[ 1 ] 4
>
> # f o r t h e s e v e n t h c o h o r t
> n <− c ( 3 , 3 , 3 , 12 , 0 , 0 )
> y <− c ( 0 , 0 , 0 .6666667 , 3 , 0 , 0 )
> n e x t RQ CRM( t a r g e t = t a r g e t , n = n , y = y , dose . c u r r = 4 ,
+ s c o r e = s c o r e , s k e l e t o n = s k e l e t o n s )
[ 1 ] 4
>
> # f o r t h e e i g h t h c o h o r t
> n <− c ( 3 , 3 , 3 , 15 , 0 , 0 )
> y <− c ( 0 , 0 , 0 .6666667 , 5 .3333333 , 0 , 0 )
> n e x t RQ CRM( t a r g e t = t a r g e t , n = n , y = y , dose . c u r r = 4 ,
+ s c o r e = s c o r e , s k e l e t o n = s k e l e t o n s )
[ 1 ] 4
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5. Conclusion

The UnifiedDoseFinding package implements novel methods for phase I dose-finding clinical
trials with non-binary endpoints. In this package, three methods, the Quasi-CRM (Yuan et al., 2007,
Pan et al., 2014), the gBOIN design (Mu et al., 2019), and the Ivanova design (Ivanova et al., 2009)
were implemented for the first time in a publicly available platform. For the quasi-binary outcomes
that converted from the ordinal grade toxicity such as the equivalent toxicity score, we can use either
the Quasi-CRM method or the gBOIN method. When the outcomes are continuous endpoints such
as the total toxicity burden, both the gBOIN method and the Ivanova method can be applied. The
functions starting with next and select for each method can be used during a prospective adaptive
trial, where the dose for the next cohorts of patients depends on the outcomes of the previous cohorts,
so that the dose transition for the next cohort of patients or the MTD identification for further clinical
studies can be spontaneously carried out. The functions starting with get oc (...) can be used to
perform simulations in the planning stage of a trial to study the robustness of the methods by using
different parameters setting choices. We also provided three real examples with details for each of
the methods to help readers adapt a more practical perspective. Overall, the UnifiedDoseFinding
package is user-friendly and provides a useful tool for the dose-finding Phase I trials with non-binary
outcomes.
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