• 제목/요약/키워드: Al thin films

검색결과 1,161건 처리시간 0.037초

Effects of Annealing Temperature on Properties of Al-Doped ZnO Thin Films prepared by Sol-Gel Dip-Coating

  • Jun, Min-Chul;Koh, Jung-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.163-167
    • /
    • 2013
  • Aluminum doped zinc oxide (AZO) thin films have been prepared on the glass substrates (Corning 1737) by sol-gel dip-coating method employing zinc acetate and aluminum chloride hexahydrate for the transparent conducting oxide (TCO) applications. 1 at% Al was doped to the ZnO thin films. The effects of post-heating temperature on the crystallization, optical and electrical properties of the AZO films have been investigated. Experimental results showed that post-heating temperature affected the microstructure, electrical resistance, and optical transmittance of the AZO films. From the X-ray diffraction analysis, all films have hexagonal wurtzite crystal structure. Optical transmittance spectra of the AZO films exhibited transmittance higher than about 80% within the visible wavelength region and the optical direct band gap ($E_g$) of these films was increased with increasing post-heating temperature. A minimum resistivity of $2.5{\times}10^{-3}{\Omega}cm$ was observed at $650^{\circ}C$.

3C-SiC 버퍼층위에 증착된 M/NEMS용 다결정 AlN 박막의 특성 (Characteristics of polycrystalline AlN thin films deposited on 3C-SiC buffer layers for M/NEMS applications)

  • 정귀상;이태원
    • 센서학회지
    • /
    • 제16권6호
    • /
    • pp.462-466
    • /
    • 2007
  • Aluminum nitride (AlN) thin films were deposited on Si substrates by using polycrystalline (poly) 3C-SiC buffer layers, in which the AlN film was grown by pulsed reactive magnetron sputtering. Characteristics of grown AlN films were investigated experimentally by means of FE-SEM, X-ray diffraction, and FT-IR, respectively. The columnar structure of AlN thin films was observed by FE-SEM. X-ray diffraction pattern proved that the grown AlN film on 3C-SiC layers had highly (002) orientation with low value of FWHM (${\Theta}=1.3^{\circ}$) in the rocking curve around (002) reflections. These results were shown that almost free residual stress existed in the grown AlN film on 3C-SiC buffer layers from the infrared absorbance spectrum. Therefore, the presented results showed that AlN thin films grown on 3C-SiC buffer layers can be used for various piezoelectric fields and M/NEMS applications.

Dielectric Characteristics of $Al_2O_3$ Thin Films Deposited by Reactive Sputtering

  • Park, Jae-Hoon;Park, Joo-Dong;Oh, Tae-Sung
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.100-100
    • /
    • 2000
  • Aluminium oxide (Al2O3) films have been investigated for many applications such as insulating materials, hard coatings, and diffusion barriers due to their attractive electrical and mechanical properties. In recent years, application of Al2O3 films for dielectric materials in integrated circuits as gates and capacitors has attracted much attention. Various deposition techniques such as sol-gel, metalorganic decomposition (MOD), sputtering, evaporation, metalorganic chemical vapor deposition (MOCVD), and pulsed laser ablation have been used to fabricate Al2O3 thin films. Among these techniques, reactive sputtering has been widely used due to its high deposition rate and easy control of film composition. It has been also reported that the sputtered Al2O3 films exhibit superior chemical stability and mechanical strength compared to the films fabricated by other processes. In this study, Al2O3 thin films were deposited on Pt/Ti/SiO/Si2 and Si substrates by DC reactive sputtering at room temperature with variation of the Ar/O2 ratio in sputtering ambient. Crystalline phase of the reactively sputtered films was characterized using X-ray diffractometry and the surface morphology of the films was observed with Scanning election microscopy. Effects of Th Ar/O2 ratio characteristics of Al2O3 films were investigated with emphasis on the thickness dependence of the dielectric properties. Correlation between the dielectric properties and the microstructure was also studied

  • PDF

Two-Facing-Targets (TFT) 스퍼터링장치를 이용하여 증착한 AlN박막의 잔류응력 측정 (Measurement of Residual Stress of AlN Thin Films Deposited by Two-Facing-Targets (TFT) Sputtering System)

  • 한창석;권용준
    • 한국재료학회지
    • /
    • 제31권12호
    • /
    • pp.697-703
    • /
    • 2021
  • Aluminum nitride having a dense hexagonal structure is used as a high-temperature material because of its excellent heat resistance and high mechanical strength; its excellent piezoelectric properties are also attracting attention. The structure and residual stress of AlN thin films formed on glass substrate using TFT sputtering system are examined by XRD. The deposition conditions are nitrogen gas pressures of 1 × 10-2, 6 × 10-3, and 3 × 10-3, substrate temperature of 523 K, and sputtering time of 120 min. The structure of the AlN thin film is columnar, having a c-axis, i.e., a <00·1> orientation, which is the normal direction of the glass substrate. An X-ray stress measurement method for crystalline thin films with orientation properties such as columnar structure is proposed and applied to the residual stress measurement of AlN thin films with orientation <00·1>. Strength of diffraction lines other than 00·2 diffraction is very weak. As a result of stress measurement using AlN powder sample as a comparative standard sample, tensile residual stress is obtained when the nitrogen gas pressure is low, but the gas pressure increases as the residual stress is shifts toward compression. At low gas pressure, the unit cell expands due to the incorporation of excess nitrogen atoms.

다양한 질소분압에서 펄스레이저법으로 성장된 AlN박막의 특성 (Characterization of AlN Thin Films Grown by Pulsed Laser Deposition with Various Nitrogen Partial Pressure)

  • 정준기;하태권
    • 소성∙가공
    • /
    • 제28권1호
    • /
    • pp.43-48
    • /
    • 2019
  • Aluminum nitride (AlN) is used by the semiconductor industry, and is a compound that is required when manufacturing high thermal conductivity. The AlN films with c-axis orientation and thermal conductivity characteristic were deposited by using the Pulsed Laser Deposition (PLD). The AlN thin films were characterized by changing the deposition conditions. In particular, we have researched the AlN thin film deposited under optimal conditions for growth atmosphere. The epitaxial AlN films were grown on sapphire ($c-Al_2O_3$) single crystals by PLD with AlN target. The AlN films were deposited at a fixed temperature of $650^{\circ}C$, while conditions of nitrogen ($N_2$) pressure were varied between 0.1 mTorr and 10 mTorr. The quality of the AlN films was found to depend strongly on the $N_2$ partial pressure that was exerted during deposition. The X-ray diffraction studies revealed that the integrated intensity of the AlN (002) peak increases as a function the corresponding Full width at half maximum (FWHM) values decreases with lowering of the nitrogen partial pressure. We found that highly c-axis orientated AlN films can be deposited at a substrate temperature of $650^{\circ}C$ and a base pressure of $2{\times}10^{-7}Torr$ in the $N_2$ partial pressure of 0.1 mTorr. Also, it is noted that as the $N_2$ partial pressure decreased, the thermal conductivity increased.

TFT(Two-Facing-Targets) 스퍼터장치에 의해 증착된 (TiAl)N 박막의 상변태에 관한 연구 (A Study on the Phase Transformations of (TiAl)N Films Deposited by TFT Sputtering System)

  • 한창석
    • 열처리공학회지
    • /
    • 제18권5호
    • /
    • pp.281-287
    • /
    • 2005
  • Titanium aluminium nitride((TiAl)N) film is anticipated as an advanced coating film with wear resistance used for drills, bites etc. and with corrosion resistance at a high temperature. In this study, (TiAl)N thin films were deposited both at room temperature and at elevated substrate temperatures of 573 to 773 K by using a two-facing-targets type DC sputtering system in a mixture Ar and $N_2$ gases. Atomic compositions of the binary Ti-Al alloy target is Al-rich (25Ti-75Al (atm%)). Process parameters such as precursor volume %, substrate temperature and Ar/$N_2$ gas ratio were optimized. The crystallization processes and phase transformations of (TiAl)N thin films were investigated by X-ray diffraction, field-emission scanning electron microscopy. The microhardness of (TiAl)N thin films were measured by a dynamic hardness tester. The films obtained with Ar/$N_2$ gas ratio of 1:3 and at 673 K substrate temperature showed the highest microhardness of $H_v$ 810. The crystallized and phase transformations of (TiAl)N thin films were $Ti_2AlN+AlN{\rightarrow}TiN+AlN$ for Ar/$N_2$ gas ratio of 1:3, $Ti_2AlN+AlN{\rightarrow}TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 1:1 and $TiN+AlN{\rightarrow}Ti_2AlN+TiN+AlN{\rightarrow}Ti_2AlN+AlN{\rightarrow}Ti_2AlN+TiN+AlN$ for Ar/$N_2$ gas ratio of 3:1. The above results are discussed in terms of crystallized phases and microhardness.

직류 마그네트론 스퍼터법에 의한 AlNO 복층박막의 제조와 특성 (Properties and Preparation of AlNO Multi-layer Thin Films Using DC Magnetron Sputter Method)

  • 김현후;오동현;백찬수;장건익;최동호
    • 한국전기전자재료학회논문지
    • /
    • 제27권9호
    • /
    • pp.589-593
    • /
    • 2014
  • AlNO multi-layer thin films on aluminum substrates were prepared by DC reactive magnetron sputtering method. $Al_2O_3$/AlNO(LMVF)/AlNO(HMVF)/Al/substrate of 4 multi-layer has been prepared in an Ar and ($N_2+O_2$) gas mixture, and $Al_2O_3$ of top layer is anti-reflection layer on double AlNO(LMVF)/AlNO(HMVF) layers and Al metal of infrared reflection layer. In this study, the roughness and surface properties of AlNO thin films were estimated by field emission scanning electron microscopy(FE-SEM). The grain size of AlNO thin films increased with increasing sputtering power. The composition of thin films has been systematically investigated using electron probe microanalysis(EPMA). The optical properties with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 200~1,500 nm. The absorptance of AlNO films shows the increasing trend with swelling ($N_2+O_2$) gas mixture in HMVF and LMVF deposition. The excellent optical performance showed above 98% of absorptance in visible wavelength region.

Properties of $Al_{2}O_{3}-SiO_{2}$ Films prepared with Metal Alkoxides

  • Soh, Dea-Wha;Park, Sung-Jai;Korobova E. Natalya
    • Journal of information and communication convergence engineering
    • /
    • 제1권3호
    • /
    • pp.133-138
    • /
    • 2003
  • The preparation of $Al_{2}O_{3}-SiO_{2}$ thin films from less than one micron to several tens of microns in thickness had been prepared from metal alkoxide sols. Two methods, dip-withdrawal and electrophoretic deposition, were employed for thin films and sheets formation. The requirements to be satisfied by the solution for preparing uniform and strong films and by the factors affecting thickness and other properties of the films were examined. For the preparation of thin, continuous $Al_{2}O_{3}-SiO_{2}$ films, therefore, metal-organic-derived precursor solutions contained Si and Al in a chemically polymerized form has been developed and produced in a clear liquid state. In the process of applying to substrates, this liquid left a transparent, continuous film that could be converted to crystalline $Al_{2}O_{3}-SiO_{2}$ upon heating to $1000^{\circ}C$. And, a significant change of the film density took place in the crystallization process, thus leading to the strict requirements as to the film thickness, which could survive crystallization.

Dielectric $Al_2O_3-SiO_2$ Films from Metal Alkoxides

  • Soh, Deawha;Natalya, Korobova E.
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.957-962
    • /
    • 2003
  • The preparation of $Al_2$O$_3$-SiO$_2$ thin films from less than one micron to several tens of microns in thickness had been prepared from metal alkoxide sols. Two methods, dip-withdrawal and electrophoretic deposition, were employed for thin films and sheets formation. The requirements to be satisfied by the solution for preparing uniform and strong films and by the factors affecting thickness and other properties of the films were examined. for the preparation of thin, continuous $Al_2$O$_3$-SiO$_2$ films, therefore, metal-organic-derived precursor solutions contained Si and Al in a chemically polymerized form has been developed and produced in a clear liquid state. In the process of applying to substrates, this liquid left a transparent, continuous film that could be converted to crystalline $Al_2$O$_3$-SiO$_2$ upon heating to 100$0^{\circ}C$. And, a significant change of the film density took place in the crystallization process, thus leading to the strict requirements as to the film thickness, which could survive crystallization.

  • PDF

Pyrosol 법에 의한 ZnO 투명전도막의 Al Doping 및 열처리 효과 (Al Doping and Post Annealing Effects of Pyrosol Deposited ZnO Thin Films)

  • 송진수;유권종;이창현;조우영;임광수;엄창영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 C
    • /
    • pp.1301-1304
    • /
    • 1994
  • ZnO transparent conducting oxide thin films have been prepared by Pyrosol deposition method. The effect of the Al doping with varying Al/Zn mole ratio and the post-deposition heat treatment on the electrical resistivity and optical transmittance of the prepared films have been investigated. From the experimental results, the ZnO:Al thin films with resistivity as low as $3{\times}10^{-3}{\Omega}cm$ and transmittance as high as 80% can be obtained by Al doping. Also We have found the annealing of the as-deposited ZnO film in vacuum leads to a substantial reduction in resistivity without affecting the optical transmittance and crystallographic orientation. However, the annealing effect of ZnO:Al thin films is smaller than ZnO films with respect to reduction in resistivity.

  • PDF