Browse > Article
http://dx.doi.org/10.3740/MRSK.2021.31.12.697

Measurement of Residual Stress of AlN Thin Films Deposited by Two-Facing-Targets (TFT) Sputtering System  

Han, Chang-Suk (Dept. of ICT Automotive Engineering, Hoseo University)
Kwon, Yong-Jun (Dept. of ICT Automotive Engineering, Hoseo University)
Publication Information
Korean Journal of Materials Research / v.31, no.12, 2021 , pp. 697-703 More about this Journal
Abstract
Aluminum nitride having a dense hexagonal structure is used as a high-temperature material because of its excellent heat resistance and high mechanical strength; its excellent piezoelectric properties are also attracting attention. The structure and residual stress of AlN thin films formed on glass substrate using TFT sputtering system are examined by XRD. The deposition conditions are nitrogen gas pressures of 1 × 10-2, 6 × 10-3, and 3 × 10-3, substrate temperature of 523 K, and sputtering time of 120 min. The structure of the AlN thin film is columnar, having a c-axis, i.e., a <00·1> orientation, which is the normal direction of the glass substrate. An X-ray stress measurement method for crystalline thin films with orientation properties such as columnar structure is proposed and applied to the residual stress measurement of AlN thin films with orientation <00·1>. Strength of diffraction lines other than 00·2 diffraction is very weak. As a result of stress measurement using AlN powder sample as a comparative standard sample, tensile residual stress is obtained when the nitrogen gas pressure is low, but the gas pressure increases as the residual stress is shifts toward compression. At low gas pressure, the unit cell expands due to the incorporation of excess nitrogen atoms.
Keywords
residual stress; AlN films; TFT sputtering system; columnar structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Cheng and I. Finnie, J. Eng. Mater. Tech., 108, 87 (1986).   DOI
2 C. S. Oh and C. S. Han, Korean J. Met. Mater., 50, 78 (2012).   DOI
3 U. C. Kaletta and C. Wenger, Ultrasonics, 54, 291 (2014).   DOI
4 X. Meng, C. Yang and Q. Chen, Mater. Lett., 90, 49 (2013).   DOI
5 H. Y. Liu, G. S. Tang and F. Zeng, J. Cryst. Growth., 363, 80 (2013).   DOI
6 P. Juijerm, I. Altenberger and B. Scholtes, Mater. Sci. Eng., A, 426, 4 (2006).   DOI
7 V. M. Hauk and G. J. Vaessen, Metall. Mater. Trans. A, 15A, 1407 (1984).
8 A. Kampfe, B. Eigenmann and D. Lohe, Z. Metallkde., 91, 967 (2000).
9 C. S. Han and O. Nittono, Korean J. Met. Mater., 39, 253 (2001).
10 V. M. Torres, M. Stevens and J. L. Edwards, Appl. Phys. Lett., 71, 1365 (1997).   DOI
11 W. M. Yim and R. J. Paff, J. Appl. Phys., 45, 1456 (1974).   DOI
12 J. A. Thornton and D. W. Hoffman, J. Vac. Sci. Technol., A, A3, 576 (1985).
13 G. Este and W. D. Westwood, J. Vac. Sci. Technol., A, A5, 1892 (1987).
14 C. S. Oh and C. S. Han, Korean J. Met. Mater., 50, 248 (2012).   DOI
15 A. Calka and J. I. Nikolov, Nanostruct. Mater.. 6, 409 (1995).   DOI
16 Y. Jin and L. Li, J. Appl. Mech., 21, 13 (2004).
17 D. W. Hoffman and J. A. Thornton, Thin Solid Films, 45, 387 (1977).   DOI
18 G. Nicolas and M. Autric, Appl. Surf. Sci., 109/110, 477 (1997).   DOI
19 H. Behnken and V. Hauk, Mater. Sci. Eng., A, 289, 60 (2000).   DOI
20 B. Hoffmann, O. Vohringer and E. Macherauch, Mater. Sci. Eng., A, 319/321, 299 (2001).   DOI