Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.9.589

Properties and Preparation of AlNO Multi-layer Thin Films Using DC Magnetron Sputter Method  

Kim, Hyun-Hoo (Department of Display Engineering, Doowon Technical University)
Oh, Dong-Hyun (Department of Display Engineering, Doowon Technical University)
Baek, Chan-Soo (Department of Display Engineering, Doowon Technical University)
Jang, Gun-Eik (Department of Material Engineering, Chungbuk National University)
Choi, Dong-Ho (Research Development Team, Sunda Korea)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.9, 2014 , pp. 589-593 More about this Journal
Abstract
AlNO multi-layer thin films on aluminum substrates were prepared by DC reactive magnetron sputtering method. $Al_2O_3$/AlNO(LMVF)/AlNO(HMVF)/Al/substrate of 4 multi-layer has been prepared in an Ar and ($N_2+O_2$) gas mixture, and $Al_2O_3$ of top layer is anti-reflection layer on double AlNO(LMVF)/AlNO(HMVF) layers and Al metal of infrared reflection layer. In this study, the roughness and surface properties of AlNO thin films were estimated by field emission scanning electron microscopy(FE-SEM). The grain size of AlNO thin films increased with increasing sputtering power. The composition of thin films has been systematically investigated using electron probe microanalysis(EPMA). The optical properties with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 200~1,500 nm. The absorptance of AlNO films shows the increasing trend with swelling ($N_2+O_2$) gas mixture in HMVF and LMVF deposition. The excellent optical performance showed above 98% of absorptance in visible wavelength region.
Keywords
Solar absorber; Magnetron sputter; Multi-layer; Gas mixture; Absorptance;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 V. Dimitrova, D. Manova, T. Paskova, T. Uzunov, N. Ivanov, and D. Dechev, Vacuum, 51, 161 (1998).   DOI   ScienceOn
2 T. Ohm, W. Yeo, and D. Kim, J. Kor. Sol. Ener. Soc., 33, 27 (2013).   DOI   ScienceOn
3 M. Julkarnain, J. Hossain, K. Sharif, and K. Khan, J. Optoelect. adv. Mater., 13, 485 (2011).
4 K. Lee. J. Kor. Sol. Ener. Soc., 30, 90 (2010).
5 H. Lee, J. Kim, S. Lee, Y. Kang, S. Lee, and M. Moon, J. Kor. Sol. Ener. Soc., 30, 107 (2010).
6 K. Lee. J. Kor. Sol. Ener. Soc., 28, 33 (2008).
7 J. Fan and P. Zavracky, Appl. Phys. Lett., 29, 478 (1977).
8 H. Graighead and R. Buhmann, J. Vac. Sci. Technol., 15, 269 (1978).   DOI   ScienceOn
9 W. Pekruhn, L. Thomas, I. Eroser, A. Schroder, and U. Wenning, Sol. Energy Mater., 13, 199 (1986).
10 Q. Zhang, Sol. Energy Mater. Sol. Cells, 62, 63 (2000).   DOI   ScienceOn
11 T. Bostrom, E. Wackelgard, and G. Westin, Sol. Energy Mater. Sol. Cells, 89, 197 (2005).   DOI   ScienceOn
12 K. Lee. J. Kor. Sol. Ener. Soc., 26, 57 (2006).
13 K. Lee. J. Kor. Phys.. Soc., 55, 1487 (2009).   DOI   ScienceOn
14 K. Lee. J. Kor. Sol. Ener. Soc., 33, 31 (2013).   DOI   ScienceOn
15 K. Lee. J. Kor. Sol. Ener. Soc., 31, 48 (2011).
16 L. Thomas and C. Tang, Sol. Energy Mater., 18, 117 (1989).   DOI   ScienceOn
17 T. Sathiaraj, R. Thangaraj, and O. Agnihotri, Sol. Energy Mater., 18, 343 (1989).   DOI   ScienceOn
18 E. Barrera-Calva, J. Mendez-Vivar, M. Ortega-Lopez, L. Huerta-Arcos, J. Morales-Corona, and R. Olayo- Gonzalez., Res. Lett. Mater. Sci., 2008, 1 (2008).