• Title/Summary/Keyword: Airborne Equipment

Search Result 65, Processing Time 0.025 seconds

A Study of Test Method for Position Reporting Accuracy of Airborne Camera (항공기 탑재용 카메라 위치출력오차 측정방안 연구)

  • Song, Dae-Buem;Yoon, Yong-Eun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.646-652
    • /
    • 2013
  • PRA(Position Reporting Accuracy) for EO/IR(Electro-Optic/Infrared) airborne camera is an important factor in geo-pointing accuracy. Generally, rate table is used to measure PRA of gimbal actuated camera like EO/IR. However, it is not always possible to fix an EUT(Equipment for Under Test) to rate table due to capacity limit of the table on the size and weight of the object(EUT). Our EO/IR is too big and heavy to emplace on it. Therefore, we propose a new verification method of PRA for airborne camera and assess the validity of our proposition. In this method we use collimator, angle measuring instrument, 6 dof motion simulator, optical surface plate, leveling laser, inclinometer and poster(for alignment).

Distribution Characteristics of Airborne Bacteria in Organic-Waste Resource Facilities (유기성 폐기물 자원화 시설에서 발생되는 부유 세균의 분포 특성)

  • Kim, Ki-Youn;Ko, Han-Jong;Kim, Dae-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.151-158
    • /
    • 2012
  • Objectives: Bioaerosols released by treating organic-waste resources cause a variety of environmental and hygiene problems. The objective of this study was to investigate the distribution characteristics of the airborne bacteria emitted from a pig manure composting plant, a principal site for organic-waste resource facilities. Methods: Three types of pig manure composting plant were selected based on fermentation mode: screw type, rotary type and natural-dry type. Each site was visited and investigated on a monthly basis between September 2009 and August 2010. A total of 36 air samplings were obtained from the pig manure composting plants. The air sampling equipment was a six-stage cascade impactor. Quantification and qualification of airborne bacteria in the air samples was performed by agar culture method and identification technique, respectively. Results: The mean concentrations of airborne bacteria in pig manure composting plant were 7,032 (${\pm}1,496$) CFU $m^{-3}$ for screw type, 3,309 (${\pm}1,320$) CFU $m^{-3}$ for rotary type, and 5,580 (${\pm}1,106$) CFU $m^{-3}$ for natural dry type. The screw type pig manure composting plant showed the highest concentration of airborne bacteria, followed by the natural dry type and the rotary type. The ratio of respirable to total airborne bacteria was approximately 40-60%. The predominant genera of airborne bacteria identified were Micrococcus spp., Staphylococcus spp. and Escherichia spp. Conclusion: Monthly levels of airborne bacteria were highest in August and lowest in November regardless of fermentation mode. There was no significant correlation relationship between airborne bacteria and environmental factors such as temperature, relative humidity and particulate matters in pig manure composting plants.

Airborne infection risk of respiratory infectious diseases and effectiveness of using filter-embeded mechanical ventilator and infectious source reduction device such as air cleaner (실내 공간에서의 호흡기 감염병 공기전파감염 위험도와 공기정화장치(필터 임배디드 기계식 환기설비 및 공기청정기 등 실내 감염원 저감 장치) 사용에 따른 효율)

  • Park, Sungjae;Park, Geunyoung;Park, Dae Hoon;Koo, Hyunbon;Hwang, Jungho
    • Particle and aerosol research
    • /
    • v.16 no.4
    • /
    • pp.73-94
    • /
    • 2020
  • Particulate infectious sources, including infectious viruses, can float in the air, causing airborne infections. To prevent indoor airborne infection, dilution control by ventilation and indoor air cleaners are frequently used. In this study, the risk of airborne infection by the operation of these two techniques was evaluated. In case of dilution control by ventilation, a high efficiency air filter was embedded at the inlet of supply air. In this study, infectious source reduction devices such as indoor air cleaner include all kinds of mechanical-filters, UV-photo catalysts and air ionizers through which air flow is forced by fans. Two mathematical models for influenza virus were applied in an infant care room where infants and young children are active, and the risk reduction efficiency was compared. As a result, in the case of individually operating the ventilator or the infectious source reduction device, the airborne infection risk reduction efficiencies were 55.2~61.2% and 53.8~59.9%, respectively. When both facilities were operated, it was found that the risk of airborne infection was reduced about 72.2~76.8%. Therefore, simultaneous operation of ventilation equipment and infectious source reduction device is the most effective method for safe environment that minimizes the risk of airborne infection of respiratory infectious diseases. In the case of a space where sufficient ventilation operation is difficult, it was found that the operation of an infectious source reduction device is important to prevent the spread of infectious diseases. This study is meaningful in that it provides an academic basis for strategies for preventing airborne infection of respiratory infectious diseases.

DESIGN AND DEVELOPMENT OF THE COMPACT AIRBORNE IMAGING SPECTROMETER SYSTEM

  • Lee, Kwang-Jae;Yong, Sang-Soon;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.118-121
    • /
    • 2007
  • In recent years, the hyperspectral instruments with high spatial and high spectral resolution have become an important component of wide variety of earth science applications. The primary mission of the proposed Compact Airborne Imaging Spectrometer System (CAISS) in this study is to acquire and provide full contiguous spectral information with high quality spectral and spatial resolution for advanced applications in the field of remote sensing. The CAISS will also be used as the vicarious calibration equipment for the cross-calibration of satellite image data. The CAISS consists of six physical units: the camera system, the Jig, the GPS/INS, the gyro-stabilized mount, the operating system, and the power inverter and distributor. Additionally, the calibration instruments such as the integrated sphere and spectral lamps are also prepared for the radiometric and spectral calibration of the CAISS. The CAISS will provide high quality calibrated image data that can support evaluation of satellite application products. This paper summarizes the design, development and major characteristic of the CAISS.

  • PDF

A study of a thermal energy equipment for controlling airborne microorganisms in indoor laboratory environments (열에너지 활용 부유미생물 제어장치 설계 및 실험실 실내공기를 대상으로 한 성능측정에 관한 연구)

  • Kim, Hyun Geon;Hwang, Gi Byung;Lee, Jun Hyun;Lee, Byung Uk
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.133-138
    • /
    • 2009
  • Airborne microorganisms, termed bioaerosols, are etiological agents of many respiratory and skin diseases. There are high demands of controlling the concentration of bioaerosols, specifically in indoor environments. Here, a new system for controlling indoor bioaerosols is designed and evaluated. An idea of a short time exposure to a thermal energy is used in the design of the equipment. The system was tested in laboratory environments. The experimental results show that the new system can reduce the concentration of viable bioaerosols of indoor laboratory environments.

  • PDF

Investigation of Job Satisfaction and Hazardous Factors of Aircraft Cleaning Worker (항공기 청소 노동자의 작업 만족도 및 유해인자 조사)

  • Choi, Yeonhak;Kim, Ki-Youn
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.174-184
    • /
    • 2020
  • Objectives: The purpose of this study was to improve the working environment by identifying the work satisfaction of the cleaning workers of the aircraft and measuring and assessing the harmful factors of the cleaning process. Methods: We asked 23 cleaning companies for questionnaires and got 100 answers from 5 companies. The A-E Airline health manager has been contacted to establish a site survey schedule. The in-flight and lounge were measured using direct reading equipment. The harmful factor to be measured are noise, dust, temperature, volatile organic compound, total airborne bacteria, and total airborne bacteria. Results: Uncomfortable positions when replacing blanket, cleaning the table, and cleaning the floor have been identified as factor that reduce work satisfaction. Noise when replacing newspapers and cleaning toilets has been identified as a factor that lowers work satisfaction. Temperature and humidity were found to reduce work satisfaction during in-flight disinfection. Measurements of aircraft cabin and lounge with direct read equipment have shown that none of the items exceed the exposure criteria. Conclusions: As a result of measuring direct-reading equipment, no items exceeded the exposure criteria for each harmful factor. A clear survey of the working environment is required based on the results, and additional research is needed using personal sample measurement.

Urinary Mercury Levels Among Workers in E-waste Shops in Nakhon Si Thammarat Province, Thailand

  • Decharat, Somsiri
    • Journal of Preventive Medicine and Public Health
    • /
    • v.51 no.4
    • /
    • pp.196-204
    • /
    • 2018
  • Objectives: To determine urinary mercury levels in e-waste workers in Southern Thailand and the airborne mercury levels in the e-waste shops where they worked, to describe the associations between urinary and airborne mercury levels, and to evaluate the prevalence of mercury exposure-related health effects among e-waste workers. Methods: A cross-sectional study was conducted by interviewing 79 workers in 25 e-waste shops who lived in Nakhon Si Thammarat Province, Thailand. Information on general and occupational characteristics, personal protective equipment use, and personal hygiene was collected by questionnaire. Urine samples were collected to determine mercury levels using a cold-vapor atomic absorption spectrometer mercury analyzer. Results: The e-waste workers' urinary mercury levels were $11.60{\mu}5.23{\mu}g/g$ creatinine (range, 2.00 to $26.00{\mu}g/g$ creatinine) and the mean airborne mercury levels were $17.00{\mu}0.50{\mu}g/m^3$ (range, 3.00 to $29.00{\mu}g/m^3$). The urinary and airborne mercury levels were significantly correlated (r=0.552, p<0.001). The prevalence of self-reported symptoms was 46.8% for insomnia, 36.7% for muscle atrophy, 24.1% for weakness, and 20.3% for headaches. Conclusions: Personal hygiene was found to be an important protective factor, and should therefore be stressed in educational programs. Employers should implement engineering measures to reduce urinary mercury levels and the prevalence of associated health symptoms among e-waste workers.

Investigation of Microbial Contamination and Working Environment in University Foodservices (대학급식소 작업시설과 환경의 미생물 오염도 분석 및 작업환경 실태조사)

  • Park, Soon-Hee;Moon, Hye-Kyung
    • Journal of the Korean Dietetic Association
    • /
    • v.23 no.2
    • /
    • pp.180-191
    • /
    • 2017
  • The purpose of this study was to identity the probability of cross-contamination from the environment. For this, we examined foodservices at 20 universities/colleges for microbiological analysis of their working facilities and environment as well as their preventive equipment against cross-contamination. Seventy percent of the 20 foodservices were found to maintain one unified working area, which suggests high probability of contamination of food/utensils/equipment in the cooking area by pre-preparation or dish washing. According to the microbiological analysis, the hygiene acceptance ratio of working facilities in the clean zone was 70%, which was higher than the average 45% hygiene acceptance ratio of working facilities in the contamination operating zone. There was a significant difference in the total plate count (P<0.001) and coliform count (P<0.01), which demonstrates that work tables in the clean zone were in a good state compared to those in the contamination operating zone. In the contamination operating zone, refrigerator shelves had a high probability of cross-contamination. Regarding the floor surface and airborne microbes, cooking areas which should be maintained as clean zones had higher cross-contamination probability than those in the contamination operating zone. So corrective actions such as cleaning and sanitizing, keeping dry floors, lowered temperature and humidity, shoe disinfecting facilities, and checking concentrations, are necessary to manage floor surfaces and airborne microbes in the cooking area.

Design of VDL Mode 2 Protocol under AOA Network for the Implementation of Bit-oriented ATS Applications (AOA망 환경에서 ATS 애플리케이션 구현을 위한 VDL Mode 2 데이터링크 프로토콜 설계)

  • Bae, Joong-won;Kim, Hyoun-kyoung;Kim, In-kyu;Kim, Tae-sik;Kim, Dong-min
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.4
    • /
    • pp.13-21
    • /
    • 2007
  • As one of YHF digital data link technologies, VDL Mode 2 is designed to be an air-to-ground subnetwork of the Aeronautical Telecommunication Network (ATN) based on the Open System Interconnection (OSI) architecture. VDL Mode 2 can be used in ATS Applications especially for CPDLC and ADS. And it is also expected to replace ACARS (Aircraft Communications Addressing and Reporting System) which has broadly been used in AOC for over 20 years. This paper presents the design result of VDL Mode 2 system under AOA (ACARS Over AVLC) environment for the implementation of bit-oriented ATS applications. The system is composed of airborne and ground subsystem. Airborne subsystem consists of VDR, CMU and an aircraft test equipment with CPDLC/ADS client applications for operational test and ground system consists of Ground Station which includes ground VDR and ground communication controller, simple DSP (Datalink Service Processor) and a ground test equipment with CPDLC/ADS server applications.

  • PDF

A Study on the Efficient Measurement of Airborne Asbestos Concentrations at Demolition Sites of Asbestos Containing Buildings, etc. in Seoul (서울시내 석면함유 건축물 철거 현장 등에서의 효과적인 공기 중 석면농도 측정을 위한 연구)

  • Lee, Jinhyo;Lee, Suhyun;Kim, Jeongyeun;Kim, Jihui;Chung, Sooknye;Kim, Jina;Oh, Seokryul;Kim, Iksoo;Shin, Jinho;Eo, Soomi;Jung, Kweon;Lee, Jinsook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.2
    • /
    • pp.113-121
    • /
    • 2014
  • Objectives: This study is intended to seek credible and efficient measurements on airborne asbestos concentrations that allow immediate action by establishing complementary data through comparative analysis with existing PCM and KF-100 method real-time monitoring equipment in working areas in Seoul where asbestos-containing buildings are being demolished, including living environment surroundings. Materials: We measured airborne asbestos concentrations using PCM and KF-100 at research institutes, monitoring networks, subway stations and demolition sites of asbestos-containing buildings. Through this measurement data and KF-100 performance testing, we drew a conversion factor and applied it via KF-100. Finally we verified the relationship between PCM and KF-100 with statistical methods. Results: The airborne asbestos concentrations by PCM for the objects of study were less than the detection limit(7 fiber/$mm^2$) in three (20%) out of 15 samples. The highest concentration was 0.009 f/cc. The airborne asbestos concentrations by PCM in laboratories, monitoring networks, subway stations and demolition sites of asbestos-containing buildings were respectively $0.002{\pm}0.000$ f/cc, $0.004{\pm}0.001$ f/cc, $0.009{\pm}0.001$ f/cc, and $0.002{\pm}0.000$ f/cc. As a result of KF-100 performance testson rooftops, the conversion factor was 0.1958. Applying the conversion factor to KF-100 for laboratories, the airborne asbestos concentrations ratio of the two ways was nearly 1:1.5($R^2$=0.8852). Also,the airborne asbestos concentration ratio of the two ways was nearly 1:1($R^2$=0.9071) for monitoring networks, subway stations, and demolition sites of asbestos-containing buildings. As a result of independent sample t-tests, there was no distinction between airborne asbestos concentrations monitored in the two ways. Conclusions: In working areas where asbestos-containing buildings are being demolished, including living environment surroundings, quickly and accurately monitoring airborne asbestos scattered in the air around the working area is highly important. For this, we believea mutual interface of existing PCM and a real-time monitoring equipment method is possible.