• Title/Summary/Keyword: Air pollutants$PM_{10}$

Search Result 422, Processing Time 0.027 seconds

Applied Horticultural Biotechnology for the Mitigation of Indoor Air Pollution

  • Torpy, Fraser R.;Pettit, Thomas;Irga, Peter J.
    • Journal of People, Plants, and Environment
    • /
    • v.21 no.6
    • /
    • pp.445-460
    • /
    • 2018
  • Exposure to indoor air pollution is an emerging world-wide problem, with growing evidence that it is a major cause of morbidity worldwide. Whilst most indoor air pollutants are of outdoor origin, these combine with a range of indoor sourced pollutants that may lead to high pollutant levels indoors. The pollutants of greatest concern are volatile organic compounds (VOCs) and particulate matter (PM), both of which are associated with a range of serious health problems. Whilst current buildings usually use ventilation with outdoor air to remove these pollutants, botanical systems are gaining recognition as an effective alternative. Whilst many years research has shown that traditional potted plants and their substrates are capable of removing VOCs effectively, they are inefficient at removing PM, and are limited in their pollutant removal rates by the need for pollutants to diffuse to the active pollutant removal components of these systems. Active botanical biofiltration, using green wall systems combined with mechanical fans to increase pollutant exposure to the plants and substrate, show greatly increased rates of pollutant removal for both VOCs, PM and also carbon dioxide ($CO_2$). A developing body of research indicates that these systems can outperform existing technologies for indoor air pollutant removal, although further research is required before their use will become widespread. Whilst it is known that plant species selection and substrate characteristics can affect the performance of active botanical systems, optimal characteristics are yet to be identified. Once this research has been completed, it is proposed that active botanical biofiltration will provide a cheap and low energy use alternative to mechanical ventilations systems for the maintenance of indoor environmental quality.

The influence on air quality of the surroundings by the facility of the district heating (집단 에너지 시설에 의한 주변 대기질 영향)

  • 연익준;주소영;이민희;손종렬;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.2
    • /
    • pp.18-25
    • /
    • 2002
  • The comparison of the air quality with the evaluation of the environmental assessment before and after operations of the heat source and of the flue-gas desulfurization facilities were studied. First of all, several sites were selected for the representative sample points, and then they were examined air quality of the surroundings. The results were that TSP(total suspended particulate) analysis after an operation of the heat source facility was $74~81{\mu}g/m^3$, PM-10 was $31~94{\mu}g/m^3$, and $SO_2$concentration was 0.002~0.009ppm, respectively. As the result of examination to the concentrations of diffused pollutants, there was no relations between TSP concentration of sample points and the effect of air quality according to the heating source. When we compared the neighbored area of the heating source with the other area, the concentration of air pollutants after an operation of the facility of the heating source was similar to the heating source, the neighbored area, and the other area. So we concluded that there was no the effect of the air pollution by producted pollutants from the heating source.

Analysis on Impacts of Renewable Energy Promotion on Mitigation of Air Pollution (신재생에너지의 확산이 대기오염 배출 저감에 미치는 영향 분석)

  • Bae, Jeong Hwan;Jung, Seo Rim
    • New & Renewable Energy
    • /
    • v.16 no.3
    • /
    • pp.13-26
    • /
    • 2020
  • This study analyzed whether the diffusion of new and renewable energy contributed to mitigating emissions of various air pollutants, including particulate matter, using panel econometric models. The theoretical foundation of such econometric models is based on the Environmental Kuznets Curve (EKC) hypothesis, which assumes an inverted U-shaped relation between national income and environmental pollution, as originally proposed by Grossman and Krueger. We examined whether there are inverted U-, U-shaped, or N-shaped relations between national income and air pollution. We demonstrate that increases in new and renewable energy significantly mitigated emissions of CO, NOX, and PM2.5. Additionally, we included NOX, SOX, PM10, and VOCs as secondary emission sources of PM2.5 and found that emission of PM10 resulted in the highest PM2.5 emissions, followed by NOX and SOX emissions. The impact of new and renewable energy on air pollution varied across regions. Increase of new and renewable energy in the Honam region significantly mitigated CO, NOX, and TSP emissions, while that in the Youngnam and metropolitan areas did not significantly mitigate air pollution overall. There was a U-shaped relationship between air pollution and national income for CO, NOX, PM2.5, and SOX, while an inverted N-shape was observed for PM10.

Sampling and Analysis of Acidic Air Pollutants Using an Annular Denuder System during the Summer Season in Chongju City (디누더 측정기를 이용한 여름철 청주시의 산성오염물질 측정과 분석)

  • 이학성;강병욱
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.441-448
    • /
    • 1996
  • The cyclone/annular denuder system/filter pack sampling system (ADS) was used to collect the acidic air pollutants in Chongju city. The data set was collected on nine different days with 24 hour sampling period from July 27 through August 27, 1995. The chemical species measured were $HNO_3, HNO_2, SO_2 and NH_3$ in the gas phase, and $PM_{2.5}(d_P<2.5 \mum), SO_4^{2-}, NO_3^- and NH_4^+$ in the particulate phase. Mean concentrations measured from this study were: $0.90 \mug/m^3 for HNO_3, 1.27 \mug/m^3 for HNO_2, 10.9 \mug/m^3 for SO_2, 4.82 \mug/m^3 for NH_3, 27.5 \mug/m^3 for PM_{2.5}, 5.24 \mug/m^3 for SO_4^{2-}, 1.22 \mug/m^3 for NO_3^-, and 1.64 \mug/m^3 for NH_4^+$. The fine particle $(PM_{2.5})$ mass measured for the ADS samples was slightly higher than the fine particle mass measured for the corresponding dichotomous sampler. For the wind coming from Chongju industrial complex the concentrations of acidic air pollutants measured were higher when compared with other directions. Specially, $SO_2 and PM_{2.5}$ concentrations for the wind coming from Chongju industrial complex were 3.6 and about 2 times, respectively, higher than those of other wind directions. High correlations were observed between $PM_{2.5} and fine particle's ion components $(r=0.82 with SO_4^{2-}, r=0.76 with NO_3^- and r=0.89 with NH_4^+). NH_4^+ and SO_4^{2-}$ was also highly correlated (r=0.97).

  • PDF

Causes of Air pollution and Effects of Mitigation Policy in Korea (우리나라 대기오염배출 원인과 저감 정책 효과 분석)

  • Bae, Jeonghwan;Kim, Yusun
    • Environmental and Resource Economics Review
    • /
    • v.25 no.4
    • /
    • pp.545-564
    • /
    • 2016
  • Recently as fine and ultra fine particles become major environmental issues in Korea, it is very important to develop effective solutions to air pollution. Accordingly this study aims at detecting causes of air pollution by using models and examining if diesel price increases contribute to reduction of diesel consumption and air pollution. TSP, PM10, $NO_X$, $SO_X$, CO, and VOC are included as major air pollutants. As a result, we found invert U shape curve between pollution and income for all air pollutants except CO. Consumer price index, coal power capacity, diesel consumption, frequency of yellow dust, number of natural gas buses, number of transport business, annual average temperature, number of manufacturing businesses are also influential in explaining causes of air pollution. As diesel price increases by 1%, air pollutants decline between 0.07~0.12% in the short run. Simultaneously, the additional revenue from increases in diesel prices might be transferred to support expansion of biofuel market. Also, stronger policy should be developed to mitigate the current air pollution problem.

A Survey on Characteristics of Distribution for Indoor Air Pollutants in Museum Environments (박물관내 실내공기오염물질의 분포 특성 실태조사)

  • Kim, Yoon-shin;Roh, Young-man;Yoon, Young-hun;Lee, Cheol-min;Kim, Ki-yeon;Kim, Jong-cheol;Jeon, Hyoung-jin;Sim, In-suk
    • 보존과학연구
    • /
    • s.28
    • /
    • pp.91-104
    • /
    • 2007
  • The goal of this study was to provide basic data for arrangement of management in museum environment. We investigated characteristics of distribution on indoor air pollutants at exhibition halls and storages in museums between July and August, 2007. The monitoring carried out at three cultural sites, Pusan, Daejeon and Kyungjoo which is possessed their own exhibition hall and storage in Museums. We adopt the several pollutants for this survey such as $PM_{10}$, $PM_{2.5}$ $CO_2$, Formaldehyde, TBC, CO, $NO_2$, Rn, VOCs, $O_3$ and followed the standard method of Ministry of Environment, Korea for sampling and analysis, respectively. The results of this survey revealed that average concentration of $PM_{10}$ and $PM_{2.5}$ in storages were $117.3{\mu}g/m^3$ and $92.6{\mu}g/m^3$, respectively. The average concentration in storages of gases pollutants and microorganism such as $CO_2$, Formaldehyde, $NO_2$, Rn, TVOC, $O_3$, and TBC showed as: 788.8ppm, $30.7{\mu}g/m^3$, 0.4ppm, 6.4ppb, $1.3pCi/{\ell}$, $1,374.9{\mu}g/m^3$, 2.4ppb, and $119.4cfu/m^3$, respectively. In addition, average concentration of $PM_{10}$ and $PM_{2.5}$ in exhibition halls were $49.5{\mu}g/m^3$ and $56.1{\mu}g/m^3$, respectively. The average concentration in exhibition halls of gases pollutants and microorganism such as $CO_2$, Formaldehyde, $NO_2$, Rn, TVOC, $O_3$, and TBC showed as: 475.2ppm, $94.1{\mu}g/m^3$, 0.3ppm, 12.4ppb, $0.3pCi/{\ell}$, $1,179.1{\mu}g/m^3$, 5.2ppb, 2.4ppb, and $24.8cfu/m^3$, respectively.

  • PDF

Evaluation and future predictions of air pollutants level in Karachi city

  • Mukwana, Kishan Chand;Samo, Saleem Raza;Jakhrani, Abdul Qayoom;Tunio, Muhammad Mureed;Jatoi, Abdul Rehman
    • Advances in environmental research
    • /
    • v.6 no.2
    • /
    • pp.139-146
    • /
    • 2017
  • The purpose of this study was to determine the present air pollutant concentrations and predicted levels for next 30 years in urban environment of Karachi city. For that, a total of fifty measurements were made for each twenty selected locations of the city. The locations were selected on the basis of land use pattern such as residential, commercial, industrial settlements, open areas, congested traffic and low traffic areas for investigation of air pollutants variability and intensity. The measurements were taken continuously for six months period using PM Meter, Model AEROCET 531 and Ambient Air Quality Meter, Model AAQ 7545. The concentration of air pollutants were found higher at Al Asif Square and Maripur Road due to higher intensity of traffic and at Korangi Crossing because of industrial areas. The level of pollutants was lower at Sea View owing to lower traffic congestion and transportation of pollutants by sea breezes.

Exposure Assessments for Children in Homes and in Daycare Centers to NO2, PMs and Black Carbon

  • Lee, Jae Young;Kim, Changhyeok;Kim, Jongbum;Ryu, Sung Hee;Bae, Gwi-Nam
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.3
    • /
    • pp.204-214
    • /
    • 2018
  • Indoor air quality was investigated in homes and daycares located in areas with heavy traffic in Seoul, South Korea from November 2013 to January 2014. Indoor and outdoor air quality measurements were collected for 48 hours in four children's homes and daycare centers. The I/O ratio (Indoor to outdoor ratio) for each major air pollutant ($NO_2$, black carbon, $PM_{10}$, and $PM_{2.5}$) was calculated, and $NO_2$ and $PM_{10}$ concentration profiles were analyzed based on indoor activity diaries recorded during the 48 hours. Most I/O ratios for $NO_2$, black carbon, $PM_{10}$, and $PM_{2.5}$ at daycare centers were less than one. At homes, I/O ratios for black carbon, $PM_{10}$, and $PM_{2.5}$ were less than one; however, most I/O ratios for $NO_2$ were greater than one due to the usage of gas stoves. The children's exposure to indoor air pollutants was calculated using a time-weighted average exposure method, and the daily intake level for each pollutant was determined.

The Effect of Ventilation and Concentration of Indoor Air Quality at Indoor Parking Lots (실내주차장의 실내공기질 농도특성 및 환기에 의한 저감효과)

  • Park, Jeong-Ho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.4
    • /
    • pp.241-247
    • /
    • 2010
  • Recently, indoor air quality (IAQ) has been one of the major concerns of people. Indoor parking lots are subject to be exposed to high concentrations of air pollutants emitted from vehicles. This study was performed to investigate indoor air quality (IAQ) at indoor parking lots. Sampling sites were selected 5 indoor parking lots. Target indoor air quality parameters include a number of criteria pollutants such PM$_{10}$, CO, CO$_2$, and HCHO. In addition, a variation of IAQ according to ventilation system operating was measured at C site (underground parking lot). In general, all pollutants were maintained below indoor air quality maintenance standards. The indoor air quality at indoor parking lots was affected by the availability of the ventilation facility and their operation frequency. At the underground parking lot (C site) with ventilation system, TVOC concentration according to ventilation system operating were found to be lower operating (488.2 ${\mu}g/m^3$) than non-operating (1,401.2 ${\mu}g/m^3$).

Change in the Prevalence of Allergic Diseases and its Association with Air Pollution in Major Cities of Korea - Population under 19 Years Old in Different Land-use Areas - (주요 대도시 알레르기 질환 유병률 변화와 대기오염과의 관련성 - 지역 용도를 고려한 19세 이하 주민 대상 -)

  • Lee, Jiho;Oh, Inbo;Kim, Min-ho;Bang, Jin Hee;Park, Sang Jin;Yun, Seok Hyeon;Kim, Yangho
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.6
    • /
    • pp.478-490
    • /
    • 2017
  • Objectives: The association of air pollution levels and land-use types with changes in the prevalence of allergic diseases (allergic conjunctivitis, allergic rhinitis, asthma, and atopic dermatitis) was investigated for seven metropolitan cities in Korea Methods: Data on daily hospital visits and admissions (of those under 19 years old) for 2003-2012 were obtained from the National Health Insurance Cooperation. Meteorological data on daily mean temperature, humidity, and air pressure were obtained from the Korea Meteorological Administration. Daily mean or maximum concentration data for five pollutants ($PM_{10}$, $O_3$, $NO_2$, $SO_2$, and CO) as measured at air quality monitoring sites operated by the Ministry of Environment were used. We estimated excess risk and 95% confidence intervals for the increasing interquatile range (IQR) of each air pollutant using Generalized Additive Models (GAM) appropriate for time series analysis. Results: In this study, we observed a significant association between the IQR increases of air pollutants and the prevalence risk of allergic diseases (allergic conjunctivitis, allergic rhinitis, asthma, and atopic dermatitis) in all metropolitan cities after adjusting for temperature, humidity, and air pressure at sea level. Among the air pollutants, $NO_2$ and $PM_{10}$ were associated with the prevalence of asthma, and $O_3$ was associated with only allergic conjunctivitis in regression analysis. However, in GAM analysis considering land-use, $O_3$ and $SO_2$ were associated with allergic conjunctivitis, PM10, O3, NO2, and CO were associated with allergic rhinitis, and $PM_{10}$, $O_3$ and $NO_2$ were associated with asthma in industrial area. Conclusion: This study found a significant association between air pollution and the prevalence of allergic related diseases in industrial areas. More detailed research considering mixed traffic-related air pollution (TRAP) and conducting meta-analyses combining data of the all cities is required.