• Title/Summary/Keyword: Air Resistance

Search Result 1,599, Processing Time 0.026 seconds

A Study on the Textile for Protective Clothing of Fire Fighters (한국 소방대원 방수피복의 소재특성에 관한 비교 연구)

  • 정정숙;이연순
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.5
    • /
    • pp.15-24
    • /
    • 2002
  • The following research conclusions were made, relative to the experiments of the textiles of fire fighters Protective Clothing. 1. When the body protection efficiency such as the thickness, the strength and heat resistance are considered, Nomex(N) is tuned out the best outer shelf, Gore-tex(KG) the best moisture barrier, and Wool-felt(WC) the best thermal barrier. 2. In the hygienic and sanitary efficiency also, N is turned out the best outer shelf, KG the best moisture barrier, and WC the best thermal barrier in its degree of water resistance, water vapour permeability, and air permeability. 3. In the washing and maintenance efficiency, too. N is turned out the best outer shell, KG the best moisture barrier, and WC the best thermal barrier, being considered the material's rate of contraction, the changing rate of frame resistance, water resistance, and water vapour permeability. 4. When considered the frame resistance against the reflection tape and reflection efficiency, O is the best material for it marks the highest score in the frame resistance and reflective effect.

The Influence of Food Hydrocolloids on Changes in the Physical Properties of Ice Cream

  • Park, Sung-Hee;Hong, Guen-Pyo;Kim, Jee-Yeon;Choi, Mi-Jung;Min, Sang-Gi
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.721-727
    • /
    • 2006
  • This study was carried out to investigate the effect of hydrocolloids on the changes in physical properties of a model ice cream. The model ice cream contained water, sugar, skin milk powder, com oil, and 4 different hydrocolloid stabilizers (gelatin, pectin, hydroxyethylstarch, locust bean gum), was manufactured in a batch type freezer. The following physical characteristics of ice cream were examined: flow behavior, overrun, air cell size, ice crystal size, and melt resistance. With regard to flow behavior, all of aged mixes had a lower apparent viscosity relative to the mix before aging, and ice cream mix containing locust bean gum had the highest viscosity. Air cell size was observed to range from 20 to $38\;{\mu}m$, and ice cream with locust bean gum showed the largest size. There was an inverse correlation between overrun and air cell size. The ice crystal sizes of all samples ranged from 25 to $35\;{\mu}m$. Ice cream with added pectin contained the smallest ice crystal size, which was significantly difference from other stabilizers (p<0.05), and resulted in superior melt resistance with increased melting time compared to other samples.

Heat ,rind Moisture Transfer Properties of Fabrics for Korean Folk Clothes (시판 한복지의 열.수분이동 특성)

  • 성수광;성은정
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.6
    • /
    • pp.1071-1083
    • /
    • 1996
  • This study was carried out to obtain some fundamental data for designing thermally comfortable Korean folk clothes (KFC) which were classified into 4 groups according to seasons and materials. It was conducted to find the relationship among structural, thermal, and moisture transfer properties, and then the properties of heat and mositure transfer while changing thickness of air layer of selected similar fabrics with various thickness were examined. The summarized results of this study were as follows ; 1. The relationship between the structrual and thermal properties showed high positive correlation with thickness SE thermal insulation value (TIV), porosity & TIV. 2. The relationship between the structural and mositure transfer properties showed high negative correlation with thickness & moisture vapor permeability (Mp), porosity & Mp respectively. 3. The relationship between the heat and moisture transfer properites showed high negative correlation with qmax, air permeability (Ap), Mp & TIV while showed high positive with Ap & Mp respectively. 4. Resistance to dry heat transfer according to thickness of air layer for KFC was increassed rapidly up to 2 mm and above this increasing rate was reduced. Resistance to evaporative heat transfer was remarkable changes in 6∼8 mm but slowly in 6∼8 man. 5. Mioisture permeability index (i) according to thickness of air layer for KFC showed the greatest value at 2 mm but had not difference between groups according to thickness.

  • PDF

Oxidation of CrAlMgSiN thin films between 600 and 900℃ in air (CrAlMgSiN 박막의 600-900℃에서의 대기중 산화)

  • Won, Seong-Bin;Xu, Chunyu;Hwang, Yeon-Sang;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.112-113
    • /
    • 2013
  • Thin CrAlMgSiN films, whose composition were 30.6Cr-11.1Al-7.3Mg-1.2Si-49.8N (at.%), were deposited on steel substrates in a cathodic arc plasma deposition system. They consisted of alternating crystalline Cr-N and AlMgSiN nanolayers. After oxidation at $800^{\circ}C$ for 200 h in air, a thin oxide layer formed by outward diffusion of Cr, Mg, Al, Fe, and N, and inward diffusion of O ions. Silicon ions were relatively immobile at $800^{\circ}C$. After oxidation at $900^{\circ}C$ for 10 h in air, a thin $Cr_2O_3$ layer containing dissolved ions of Al, Mg, Si, and Fe formed. Silicon ions became mobile at $900^{\circ}C$. After oxidation at $900^{\circ}C$ for 50 h in air, a thin $SiO_2-rich$ layer formed underneath the thin $Cr_2O_3$ layer. The film displayed good oxidation resistance. The main factor that decreased the oxidation resistance of the film was the outward diffusion and subsequent oxidation of Fe at the sample surface, particularly along the coated sample edge.

  • PDF

Study of High Temperature of Inconel 740 Alloy in Air and Ar-0.2%SO2 Gas (대기 및 Ar-0.2%SO2가스에서 Inconel 740 합금의 고온부식 연구)

  • Lee, Dong Bok;Kim, Min Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.43-52
    • /
    • 2021
  • The Ni-based superalloy, Inconel 740, was corroded between 800 and 1100℃ for up to 100 hr in air and Ar-0.2%SO2 gas in order to study its corrosion behavior in air and sulfur/oxygen environment. It displayed relatively good corrosion resistance in both environment, because its corrosion was primarily dominated by not sulfidation but oxidation especially in Ar-0.2%SO2 gas. Such was attributed to the thermodynamic stability of oxides of alloying elements when compared to corresponding sulfides. The scales consisted primarily of Cr2O3, together with some NiAl2O4, MnCr2O4, NiCrMnO4, and rutile-TiO2. Sulfur from SO2 gas made scales prone to spallation, and thicker. It also widened the internal corrosion zone when compared to air. The corrosion resistance of IN740 was mainly indebted to the formation of protective Cr2O3-rich oxides, and suppression of the sulfide formation.

A Study on Carbonation Resistance of Concrete Using Surface-coated Lightweight Aggregates (표면코팅된 경량골재를 사용한 콘크리트의 탄산화 저항성에 관한 연구)

  • Eom, In-Hyeok;Jeong, Euy-Chang;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.1
    • /
    • pp.21-28
    • /
    • 2014
  • The purpose of this study is to investigate the mechanical properties and carbonation resistance of concretes using lightweight aggregate coated surface finishing materials. To evaluate the mechanical properties and carbonation resistance of concrete, slump, air amount, air-dried unit volume weight, compressive strength, and carbonation depth are tested. In terms of the unit volume weight of concrete, air-dried unit volume weight of concrete using coating lightweight aggregate was measured as $1,739{\sim}1,806kg/m^3$. When using coating aggregate, compressive strength of concrete at 28 days was measured as much as 82.7~95.9% of the compressive strength using non-coating aggregate. It is found that compressive strength tends to decrease with coating lightweight aggregate. However, all concretes using coating lightweight aggregate except O-LWAC satisfied the criteria for 28-day compressive strength suggested in KS. The measurement of carbonation depth when the water-repellent agent was used found that carbonation depth was reduced by as much as 2.6~6.1%. On the other hand, when using polymer waterproof agent, carbonation depth was reduced by as much as 8.6~12.0%. Consequently, to improve carbonation resistance, polymer waterproof agent was more effective than water-repellent agent. In particular, epoxy showed the most outstanding performance.

Characterization of Porous Asphalt Concrete Coated with MMA Resin (아크릴 수지로 코팅한 배수성 아스팔트 콘크리트의 특성 평가)

  • Choi, Tae-Jun;Lee, Hyun-Jong;Kim, Tae-Woo;Song, Jae-Hyok
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.111-120
    • /
    • 2009
  • This paper presents a fundamental findings of the functional and structural performance of the porous asphalt concrete coated with MMA resin. To evaluate the structural performance, cantabro, wheel tracking, moisture sensitivity and indirect tensile fatigue tests are performed. The tests results show that the cantabro loss is reduced three times and fatigue resistance is significantly increased after the specimens are coated with MMA resin. However there are little changes in the rutting and moisture damage resistances before and after the coating. Air voids, permeability and BPT(British Pendulum Test) tests are conducted to study the functional performance. It is observed form the tests that the air voids and permeability are slightly decreased after the coating. However, the changes in the air voids and permeability are negligible. The skid resistance of the coated specimens is lower than reference specimens. However, the skid resistance is maintained beyond the level of the reference specimens when silica sands are chipped on top of the coated surface.

  • PDF

Evaluation of Engineering Properties in Early-Age Concrete with TDFA (TDFA를 혼입한 초기재령 콘크리트의 공학적 특성 평가)

  • Park, Jae-Sung;Park, Sang-Min;Kim, Hyeok-Jung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.1-8
    • /
    • 2016
  • This paper presents an evaluation of engineering properties in TDFA(Tire Derived Fuel Ash)- based concrete in early age. Concrete containing 0.5 of w/b(water to binder) ratio and 20% of FA(Fly Ash) replacement ratio are prepared, and FA content are replaced with TDFA from 3% to 12% for evaluating the effect of TDFA on fresh and hardened concrete properties. With higher than 6% of TDFA replacement ratio, workability is significantly worsened but it is improved with more SP(Super plasticizer) and AE(Air Entrainer) agent. Concrete with 6~12% of TDFA shows reasonable strength development and better resistance to carbonation and chloride attack in spite of early-aged condition. However concrete with 6% TDFA shows poor resistance to freezing and thawing action due to insufficient air content. If air content and workability are obtained, replacement of TDFA to 12% can be used for concrete with FA.

Mixed Convection Transport from a Module on the Bottom Surface of Three Dimensional Channel (3차원 채널 밑면에 탑재된 모듈로부터의 혼합대류열전달)

  • Lee, Jin-Ho;Park, Sang-Hee;Riu, Kap-Jong;Bang, Chang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.632-639
    • /
    • 2000
  • Conjugate heat transfer from a heat generating module ($31{\times}31{\times}7mm^3$) bonded through the module support on the floor of a parallel-plate channel(20mm high, 400mm wide, and 800mm long) to mixed convective air flow(0.2${\sim}$0.9m/s) is studied experimentally. The input power to the module is changed in a range 1.0${\sim}$4.5W, the floor thickness 0.2${\sim}$5mm, and the thermal resistance of module support, Rc:=0.06, 1.03 and 82.0K/W. Thermal conductance(Uc) of the board and convective thermal conductance($U_A$) from the module were derived, and the effect of V; Rc and t on Uc was investigated. It is found that the conjugate conductance (Uc) and the conductive heat transfer ratio ($Q_B$/Q) depend on the thermal resistance of the module support, the air velocity and the board thickness. The change of the module support resistance and the board thickness helps to elucidate the relative significance of heat transfer paths through the module support, the board, and from the board surface to the air. Additional information is investigated about the dependence of the heat transfer rate on the mixed convection parameter.

High Temperature Corrosion of Alloy 617 in Impure Helium and Air for Very High-Temperature Gas Reactor (초고온가스로용 Alloy 617의 불순물 함유 헬륨/공기 중에서 고온부식 특성)

  • Jung, Sujin;Lee, Gyeong-Geun;Kim, Dong-Jin;Kim, Dae-Jong
    • Corrosion Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.102-112
    • /
    • 2013
  • A very high-temperature gas reactor (VHTR) is one of the next generation nuclear reactors owing to its safety, high energy efficiency, and proliferation-resistance. Heat is transferred from the primary helium loop to the secondary helium loop through an intermediate heat exchanger (IHX). Under VHTR environment Alloy 617 is being considered a candidate Ni-based superalloy for the IHX of a VHTR, owing to its good creep resistance, phase stability and corrosion resistance at high temperature. In this study, high-temperature corrosion tests were carried out at 850 - $950^{\circ}C$ in air and impure helium environments. Alloy 617 specimens showed a parabolic oxidation behavior for all temperatures and environments. The activation energy for oxidation was 154 kJ/mol in helium environment, and 261 kJ/mol in an air environment. The scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDS) results revealed that there were a Cr-rich surface oxide layer, Al-rich internal oxides and depletion of grain boundary carbide after corrosion test. The thickness and depths of degraded layers also showed a parabolic relationship with the time. A corrosion rate of $950^{\circ}C$ in impure helium was higher than that in an air environment, caused by difference in the outer oxide morphology.