• Title/Summary/Keyword: Air Gap

Search Result 1,449, Processing Time 0.027 seconds

Design of an Antireflection Coating for High-efficiency Superconducting Nanowire Single-photon Detectors

  • Choi, Jiman;Choi, Gahyun;Lee, Sun Kyung;Park, Kibog;Song, Woon;Lee, Dong-Hoon;Chong, Yonuk
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.375-383
    • /
    • 2021
  • We present a simulation method to design antireflection coating (ARCs) for fiber-coupled superconducting nanowire single-photon detectors. Using a finite-element method, the absorptance of the nanowire is calculated for a defined unit-cell structure consisting of a fiber, ARC layer, nanowire absorber, distributed Bragg reflector (DBR) mirror, and air gap. We develop a method to evaluate the uncertainty in absorptance due to the uncontrollable parameter of air-gap distance. The validity of the simulation method is tested by comparison to an experimental realization for a case of single-layer ARC, which results in good agreement. We show finally a double-layer ARC design optimized for a system detection efficiency of higher than 95%, with a reduced uncertainty due to the air-gap distance.

Fluctuation Characteristics of Radial Void Fraction in Vertical Concentric Annuli (수직동심환상관에서 반경방향 보이드율의 변동특성)

  • Son B.J.;Kim I.S.;Kim M.C.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.5
    • /
    • pp.516-524
    • /
    • 1987
  • This paper presents experimental data of fluctuation characteristics of local void fraction of air-water two-phase flow which are associated with the flow pattern, annular gap size and radial location in vertical concentric annuli with coefficient of skewness and kurtosis. The annular gap widths are 13mm, 11mm, and 9mm for a 38m inner diameter as the lucite outer tube. A electrical conductivity probe was used to measure the local void fraction and traversed diametrically from inner wall to outer wall using radial increments of 2mm. It was shown that distribution of the coefficient of skewness and kurtosis, which is related that the one is the asymmetry and the other peakness of local void fraction distribution was influenced by flow pattern, annular gap size and radial location.

  • PDF

A Study on the Taper Plunger Type Proportional Electromagnet for ISC Valve (ISC 밸브용 테이퍼 플런저형 비례전자석에 관한 연구)

  • Song, Chang-Seop;Lee, Tae-Hyeong;Yun, Jang-Sang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.125-132
    • /
    • 1993
  • On this study, magnetic force versus input currents is analyzed by modeling taper plunger type proportional electromagnet of ISC valve using the permernce method. And, the reliabiliy of simulation is verified by comparing the experimental values with the calaulate magnetic force. From the result of this study, it is found that the taper angles at plunger and core, the length of air gap between plunger and yoke are the prumary factors in designing taper plunget type proportional electromagnet. Magnetic force is decreased as a whole according to increasing the air gap between pluger and yoke, and vise versa. But, the magnetic force is not proportional to current, when the air gap is very small. In case of decreasing the taper angle of pluger, the stroke range of plunger where magnetic force is proportional to current becomes farther from core.

  • PDF

A Study on the 3D Imaging of High Temperature Heating Cement Paste and the Analysis of Variation of the Pore Structure (고온 가열 시멘트 페이스트의 3D 영상화 및 세공구조 변화 분석에 관한 연구)

  • Kim, Min-Hyouck;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.147-148
    • /
    • 2020
  • In case of high temperature damage such as fire, the durability of concrete is reduced due to the collapse of internal pore tissue. Therefore, in this paper, we are going to analyze the pore structure of cement paste hardening agent using MIP analysis and build up 3D data produced using X-ray CT tomography. The test specimen is made of cement paste from W/C 0.4. As the temperature of heating increased, the amount of air gap and the diameter of air gap in cement paste increased. It is judged that the air gap structure inside cement collapsed due to the evaporation of the hydrate, gel count, capillary water, etc. inside the cement due to the high temperature.

  • PDF

A study on the Observer Design of the Levitation System using Kalman Filter (칼만필터를 이용한 부상시스템 관측기 설계에 관한 연구)

  • Jo, Jeong-Min;Han, Y.J.;Lee, C.Y.;Lee, H.W.;Kang, B.B.;Lee, Y.H.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1191_1192
    • /
    • 2009
  • The objective of levitation control design is to stabilize a levitation system, or obtain certain transient response, bandwidth, and steady state error. An air gap signal from the each corner is important parameter to design levitation controller. A levitation controller using gap signals with measurement delay time can not make a expected performance. In this paper, a new air gap estimator to improve the performance of levitation controller is proposed. The estimated gap signal which has little measurement delay time is used as a feedback value in the levitation controller.

  • PDF

Digital Control of an Electromagnetic Levitation System (자기부상 시스템의 디지털 제어)

  • 이승욱;이건복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.9
    • /
    • pp.2312-2321
    • /
    • 1994
  • In this work the dynamics of an electromagnetic levitation system is described by a set of three first order nonlinear ordinary differential equations. The objective is to design a digital linear controller which takes the inherent instability of the uncontrolled system and the disturbing force into consideration. The controller is made by employing digital linear quadratic(LQ) design methodology and the unknown state variables are estimated by the kalman filter. The state estimation is performed using not only an air gap sensor but also both an air gap sensor and a piezoelectric accelerometer. The design scheme resulted in a digital linear controller having good stability and performance robustness in spite of various modelling errors. In case of using both a gap sensor and an accelerometer for the state estimation, the control input was rather stable than that in a system with gap sensor only and the controller dealt with the disturbing force more effectively.

Improvements of Performance of Multi-DOF Spherical Motor by Double Air-gap Feature

  • Lee, Ho-Joon;Park, Hyun-Jong;Won, Sung-Hong;Ryu, Gwang-Hyun;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.90-96
    • /
    • 2013
  • As the need of electric motor is increased rapidly throughout our society, the various application fields are created and the service market called robot gets expanded as well as the existing industrial market. Out of those, the joint systems such as humanoid that is servo actuator for position control or all fields which require multi-degree of freedom (multi-DOF) require the development of innovative actuator. It is multi-DOF spherical motor that can replace the existing system in multi-DOF operating system. But, multi-DOF spherical motor that has been researched up to date is at the stage which is insufficient in performance or mechanical practicality yet. Thus, first of all the research results and limitation of the previously-researched guide frame-type spherical motors were analyzed and then the feature of double air-gap spherical motor which was devised to complement that was studied. The double air-gap multi-DOF spherical motor is very suitable spherical motor for system applying which requires the multi-DOF operation due to its simple structure that does not require other guide frame as well as performance improvement due to its special shape which has two air-gaps. So, the validity of the study was verified by designing and producing it with 3D-FEM through the exclusive jig for multi-DOF spherical motor.

Investigation of the Design Wave Forces for Ear-Do Ocean Research Station I: Three Dimensional Hydraulic Model Tests (이어도 종합해양과학기지에 대한 설계파력의 검토 I: 삼차원 수리모형실험)

  • 전인식;심재설;최성진
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.4
    • /
    • pp.157-167
    • /
    • 2000
  • Korea Ocean Research and Development Institute performed the basic design of the Ear-Do Ocean Research Station in 1998. The design wave was taken to be the deep water wave which was obtained through wave hindcasting procedure. Wave forces acting on the structure were calculated by Morison formula utilizing the stream function theory of 5th. order. In the present study, a three dimensional hydraulic model testing was undertaken to investigate the validity of the basic design, measuring wave propagation over the Ear-Do, horizontal wave forces and air gaps. The measured forces were all compared by the corresponding values calculated by SACS program based on th design on the design wave. The results showed that in the three deep water wave directions (SSW, S, SE) the measured wave farces appeared less than the SACS calculated. But in the NNW wave direction, the measured forces generally exceeded the calculated values and showed a peculiar pattern very similar to the case that waves are superimposed by an unidirectional current. It was also found that the measured air gap underneath the structure appeared less than the values taken in the basic design for all wave directions.

  • PDF