DOI QR코드

DOI QR Code

Digital Control of an Electromagnetic Levitation System

자기부상 시스템의 디지털 제어


Abstract

In this work the dynamics of an electromagnetic levitation system is described by a set of three first order nonlinear ordinary differential equations. The objective is to design a digital linear controller which takes the inherent instability of the uncontrolled system and the disturbing force into consideration. The controller is made by employing digital linear quadratic(LQ) design methodology and the unknown state variables are estimated by the kalman filter. The state estimation is performed using not only an air gap sensor but also both an air gap sensor and a piezoelectric accelerometer. The design scheme resulted in a digital linear controller having good stability and performance robustness in spite of various modelling errors. In case of using both a gap sensor and an accelerometer for the state estimation, the control input was rather stable than that in a system with gap sensor only and the controller dealt with the disturbing force more effectively.

Keywords