• 제목/요약/키워드: Aggrecan

검색결과 29건 처리시간 0.024초

Platelet-Rich Plasma Enhances Proliferation and Migration and Inhibits Inflammatory Processes in Canine Chondrocytes

  • Kim, Dongyub;Jeong, Seong Mok;Kwon, Youngsam;Yun, Sungho
    • 한국임상수의학회지
    • /
    • 제36권4호
    • /
    • pp.200-206
    • /
    • 2019
  • This study was performed to assess the anti-inflammatory and cartilage regenerative effects of platelet-rich plasma (PRP) on canine chondrocytes. Proliferation and migration assays under both normal and lipopolysaccharide (LPS)-induced inflammatory conditions were performed with various concentrations of PRP (1% to 10%). The expression levels of genes related to osteoarthritis were evaluated in the following groups: PRP group, LPS group and LPS + PRP group. mRNA expression levels were detected using real-time polymerase chain reaction (RT-PCR). Proliferation assays showed significantly enhanced proliferation in all PRP-treated groups compared with the no serum group. Compared with 10% fetal bovine serum (FBS), PRP concentrations above 3% in the normal condition and 1% to 7% PRP in the LPS-induced inflammatory condition were found to significantly promote chondrocyte proliferation. In the normal condition, all PRP-treated groups showed significantly increased cell migration compared with the no serum group. Chondrocyte migration was decreased with LPS-induced inflammation, but PRP treatment resulted in significantly enhanced migration compared with the other groups in this condition. According to RT-PCR, the LPS + PRP group showed significantly higher levels of COL1A1, IL-6, aggrecan and lower levels of $TNF-{\alpha}$, MMP-1, MMP-3 mRNA expression compared to the LPS group. The results of this study suggest that PRP application can enhance the proliferation and migration of canine chondrocytes and improve canine articular cartilage regeneration.

Hypoxic condition enhances chondrogenesis in synovium-derived mesenchymal stem cells

  • Bae, Hyun Cheol;Park, Hee Jung;Wang, Sun Young;Yang, Ha Ru;Lee, Myung Chul;Han, Hyuk-Soo
    • 생체재료학회지
    • /
    • 제22권4호
    • /
    • pp.271-278
    • /
    • 2018
  • Background: The chondrogenic differentiation of mesenchymal stem cells (MSCs) is regulated by many factors, including oxygen tensions, growth factors, and cytokines. Evidences have suggested that low oxygen tension seems to be an important regulatory factor in the proliferation and chondrogenic differentiation in various MSCs. Recent studies report that synovium-derived mesenchymal stem cells (SDSCs) are a potential source of stem cells for the repair of articular cartilage defects. But, the effect of low oxygen tension on the proliferation and chondrogenic differentiation in SDSCs has not characterized. In this study, we investigated the effects of hypoxia on proliferation and chondrogenesis in SDSCs. Method: SDSCs were isolated from patients with osteoarthritis at total knee replacement. To determine the effect of oxygen tension on proliferation and colony-forming characteristics of SDSCs, A colony-forming unit (CFU) assay and cell counting-based proliferation assay were performed under normoxic (21% oxygen) or hypoxic (5% oxygen). For in vitro chondrogenic differentiation, SDSCs were concentrated to form pellets and subjected to conditions appropriate for chondrogenic differentiation under normoxia and hypoxia, followed by the analysis for the expression of genes and proteins of chondrogenesis. qRT-PCR, histological assay, and glycosoaminoglycan assays were determined to assess chondrogenesis. Results: Low oxygen condition significantly increased proliferation and colony-forming characteristics of SDSCs compared to that of SDSCs under normoxic culture. Similar pellet size and weight were found for chondrogensis period under hypoxia and normoxia condition. The mRNA expression of types II collagen, aggrecan, and the transcription factor SOX9 was increased under hypoxia condition. Histological sections stained with Safranin-O demonstrated that hypoxic conditions had increased proteoglycan synthesis. Immunohistochemistry for types II collagen demonstrated that hypoxic culture of SDSCs increased type II collagen expression. In addition, GAG deposition was significantly higher in hypoxia compared with normoxia at 21 days of differentiation. Conclusion: These findings show that hypoxia condition has an important role in regulating the synthesis ECM matrix by SDSCs as they undergo chondrogenesis. This has important implications for cartilage tissue engineering applications of SDSCs.

A biodegradable magnesium alloy sample induced rat osteochondral defect repair through Wnt/β-catenin signaling pathway

  • Zhao, Kexin;Chen, Yingqi;Yu, Fei;Jian, Weng;Zheng, Ming;Zeng, Hui
    • Advances in nano research
    • /
    • 제12권3호
    • /
    • pp.301-317
    • /
    • 2022
  • Many studies have shown that Mg-Nd-Zn-Zr (abbreviated as JDBM) alloy has good biocompatibility and biodegradability as well as promotion of cell adhesion, proliferation and differentiation, and Wnt/β-catenin signaling pathway may play a unique role in joint tissue by controlling the function of chondrocytes, osteoblasts and synoviocytes. However, it is not clear whether the JDBM alloy induces osteochondral repair through Wnt/β-catenin signaling pathway. This study aims to verify that JDBM alloy can repair osteochondral defects in rats, which is realized by Wnt/β-catenin signaling pathway. In this study, the osteochondral defect model of the right femoral condyle non-weight-bearing area in rats was established and randomly divided into three groups: Control group, JDBM alloy implantation group and JDBM alloy implantation combined with signaling pathway inhibitor drug ICRT3 injection. It was found that after JDBM alloy implantation, the bone volume fraction (BVF) became larger, the bone trabeculae were increased, the relative expression of osteogenesis gene Runx2, Bmp2, Opn, Ocn and chondrogenesis gene Collagen II, Aggrecan were increased, and the tissue repair was obvious by HE and Masson staining, which could be inhibited by ICRT3.

7α,25-Dihydroxycholesterol-Induced Oxiapoptophagic Chondrocyte Death via the Modulation of p53-Akt-mTOR Axis in Osteoarthritis Pathogenesis

  • Jeong-Yeon Seo;Tae-Hyeon Kim;Kyeong-Rok Kang;HyangI Lim;Moon-Chang Choi;Do Kyung Kim;Hong Sung Chun;Heung-Joong Kim;Sun-Kyoung Yu;Jae-Sung Kim
    • Molecules and Cells
    • /
    • 제46권4호
    • /
    • pp.245-255
    • /
    • 2023
  • This study aimed to exploring the pathophysiological mechanism of 7α,25-dihydroxycholesterol (7α,25-DHC) in osteoarthritis (OA) pathogenesis. 7α,25-DHC accelerated the proteoglycan loss in ex vivo organ-cultured articular cartilage explant. It was mediated by the decreasing extracellular matrix major components, including aggrecan and type II collagen, and the increasing expression and activation of degenerative enzymes, including matrix metalloproteinase (MMP)-3 and -13, in chondrocytes cultured with 7α,25-DHC. Furthermore, 7α,25-DHC promoted caspase-dependent chondrocyte death via extrinsic and intrinsic pathways of apoptosis. Moreover, 7α,25-DHC upregulated the expression of inflammatory factors, including inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2, via the production of reactive oxygen species via increase of oxidative stress in chondrocytes. In addition, 7α,25-DHC upregulated the expression of autophagy biomarkers, including beclin-1 and microtubule-associated protein 1A/1B-light chain 3 via the modulation of p53-Akt-mTOR axis in chondrocytes. The expression of CYP7B1, caspase-3, and beclin-1 was elevated in the degenerative articular cartilage of mouse knee joint with OA. Taken together, our findings suggest that 7α,25-DHC is a pathophysiological risk factor of OA pathogenesis that is mediated a chondrocyte death via oxiapoptophagy, which is a mixed mode of apoptosis, oxidative stress, and autophagy.

Analysis of Molecular Expression in Adipose Tissue-Derived Mesenchymal Stem Cells : Prospects for Use in the Treatment of Intervertebral Disc Degeneration

  • Jin, Eun-Sun;Min, Joongkee;Jeon, Sang Ryong;Choi, Kyoung Hyo;Jeong, Je Hoon
    • Journal of Korean Neurosurgical Society
    • /
    • 제53권4호
    • /
    • pp.207-212
    • /
    • 2013
  • Objective : Recent studies have shown encouraging progress toward the use of autogenic and allogenic mesenchymal stem cells (MSCs) to arrest, or even lead to partial regeneration in, intervertebral disc (IVD) degeneration. However, this technology is still in its infancy, and further development is required. The aim of this study was to analyze whether rat adipose-derived mesenchymal stem cells (ADMSC) can differentiate towards IVD-like cells after treatment with transforming growth factor ${\beta}3$ (TGF-${\beta}3$) in vitro. We also performed quantitative analysis of gene expression for ADMSC only, ADMSCs treated with TGF-${\beta}3$, and co-cultured ADMSCs treated with TGF-${\beta}3$. Methods : ADMSCs were sub-cultured to homogeneity and used in fluorocytometry assays for CD11, CD45, and CD90/Thy1. ADMSCs were differentiated in spheroid culture towards the chondrogenic lineage by the presence of TGF-${\beta}3$, dexamethasone, and ascorbate. We also co-cultured pure ADMSCs and nucleus pulposus cells in 24-well plates, and performed immunohistochemical staining, western blotting, and RT-PCR for quantitative analysis of gene expression. Results : Results of fluorocytometry were positive for CD90/Thy1 and negative for CD11 and CD45. TGF-${\beta}3$-mediated induction of ADMSCs led to the expression of the differentiation markers of intervertebral disc-like cells, such as aggrecan, collagen II, and sox-9. Co-cultured ADMSCs treated with TGF-${\beta}3$ showed higher expression of differentiation markers and greater extracellular matrix production compared with ADMSCs treated with TGF-${\beta}3$ alone. Conclusion : ADMSC treated with TGF-${\beta}3$ may be an attractive source for regeneration therapy in degenerative IVD. These findings may also help elucidate the pathologic mechanism of MSC therapy in the degeneration of IVD in vivo.

DBP 스폰지와 DBP/PLGA 지지체에서의 인간 디스크세포 거동분석 비교 (The Comparison of Sponges and PLGA Scaffolds Impregnated with DBP on Growth Behaviors of Human Intervertebral Disc Cells)

  • 이선경;홍희경;김수진;김용기;송이슬;하윤;이동원;강길선
    • 폴리머
    • /
    • 제34권5호
    • /
    • pp.398-404
    • /
    • 2010
  • 본 연구팀은 DBP를 함침시킨 물성이 서로 다른 스폰지와 PLGA 지지체를 제작한 후 세포 부착, 증식 및 형태 유지를 알아보기 위한 실험을 수행하였다. WST 분석법과 SEM 관찰을 통하여 스폰지에 비해서 PLGA 지지체에서의 세포의 증식이 활발한 것을 확인하였고, RT-PCR을 통해 디스크세포에서 특이적으로 발현하는 제 2형 콜라겐과 어그리칸의 발현을 확인하였다. WST 결과, 세포 증식률은 DBP/PLGA 지지체가 DBP를 함침시킨 스폰지보다 세포 증식률이 높음을 확인하였다. 본 연구팀은 스폰지보다 PLGA 지지체가 인간디스크의 표현형 유지 및 증식에 있어서 긍정적인 영향을 미치는 것을 확인하였다.

Upregulation of miR-23b Enhances the Autologous Therapeutic Potential for Degenerative Arthritis by Targeting PRKACB in Synovial Fluid-Derived Mesenchymal Stem Cells from Patients

  • Ham, Onju;Lee, Chang Youn;Song, Byeong-Wook;Lee, Se-Yeon;Kim, Ran;Park, Jun-Hee;Lee, Jiyun;Seo, Hyang-Hee;Lee, Chae Yoon;Chung, Yong-An;Maeng, Lee-So;Lee, Min Young;Kim, Jongmin;Hwang, Jihwan;Woo, Dong Kyun;Chang, Woochul
    • Molecules and Cells
    • /
    • 제37권6호
    • /
    • pp.449-456
    • /
    • 2014
  • The use of synovial fluid-derived mesenchymal stem cells (SFMSCs) obtained from patients with degenerative arthropathy may serve as an alternative therapeutic strategy in osteoarthritis (OA) and rheumatoid arthritis (RA). For treatment of OA and RA patients, autologous transplantation of differentiated MSCs has several beneficial effects for cartilage regeneration including immunomodulatory activity. In this study, we induced chondrogenic differentiation of SFMSCs by inhibiting protein kinase A (PKA) with a small molecule and microRNA (miRNA). Chondrogenic differentiation was confirmed by PCR and immunocytochemistry using probes specific for aggrecan, the major cartilaginous proteoglycan gene. Absorbance of alcian blue stain to detect chondrogenic differentiation was increased in H-89 and/or miRNA-23b-transfected cells. Furthermore, expression of matrix metalloproteinase (MMP)-9 and MMP-2 was decreased in treated1 cells. Therefore, differentiation of SFMSCs into chondrocytes through inhibition of PKA signaling may be a therapeutic option for OA or RA patients.

퇴행성 골관절염에 대한 HPL-04의 효과 (Effects of HPL-04 on Degenerative Osteoarthritis)

  • 나지영;송기쁨;김석호;권영배;김대기;이준경;조형권;권중기
    • 한국식품영양과학회지
    • /
    • 제43권1호
    • /
    • pp.30-39
    • /
    • 2014
  • 본 연구에서는 HPL-04가 골관절염의 예방 및 치료 약물로서의 가능성을 탐색하여 다음과 같은 결론을 얻었다. HPL-04는 연골세포 생존율과 연골형성과 관련된 collagen type II, SOX 9 그리고 aggrecan의 유전자 발현을 유의성 있게 증가시킬 뿐만 아니라 염증성 인자와 관련 있는 MMP-2, 9도 유의성 있게 감소시켰다. HPL-04는 MIA에 의해 유도된 퇴행성 골관절염에서 관절연골의 파괴와 골 침식 등 연골의 변성을 억제했으며 proteoglycan의 소실을 유의성 있게 감소시켰다. 이에 본 연구는 HPL-04가 부작용이 적고 약리효과가 뛰어나 골관절염 예방 및 치료제 개발에 활용될 수 있을 것으로 본다.

Concentration-dependent in vitro Anti-osteoarthritis Effects of Mixed Formula - Pomegranate Concentrate Powder: Eucommiae Cortex: Achyranthis Radix 5:4:1 (g/g) on the Primary Cultured Rat Articular Chondrocytes

  • Choi, Beom Rak;Ku, Sae Kwang;Kang, Su Jin;Park, Hye Rim;Sung, Mi Sun;Lee, Young Joon;Park, Ki Moon
    • 동의생리병리학회지
    • /
    • 제33권2호
    • /
    • pp.131-140
    • /
    • 2019
  • The objective of present study is to evaluate concentration-dependent in vitro anti-osteoarthritic (OA) effects of synergic mixed formula consisted of dried pomegranate juice concentrate powder, Eucommiae Cortex aqueous extract and Achyranthis Radix aqueous extract 5:4:1 (g/g) mixture on the primary cultured rat articular chondrocytes. First, any cytotoxic effect of mixture was observed using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium Bromide) assay. Next, cyto-protective effect of test substances was evaluated by using the recombinant human interleukin $(rhIL)-1{\alpha}$ induced chondrocytes. In addition, anti-inflammatory effects were also observed on the lipopolysaccaride (LPS) treated chondrocytes through prostaglandin $E_2(PGE_2)$ productions and 5-lipoxygenase (LPO) activities, and inhibitory effects on matrix metalloproteinase (MMP)-2 and MMP-9 activities were observed on $rhIL-1{\alpha}$ treated chondrocytes with their extracellular matrix (ECM) related mRNA expressions. No obvious cytotoxic effects of mixture were demonstrated. Inflammatory damages of chondrocytes and related ECM degradations induced by treatment of LPS or $rhIL-1{\alpha}$ were significantly and concentration-dependently inhibited by pretreatment of mixture from a concentration level of 0.001 mg/ml to 1 mg/ml. In addition, mixture showed $IC_{50}$ for $rhIL-1{\alpha}-induced$ MMP-2 and MMP-9 activities as 44.01 and $162.47{\mu}g/ml$, and also showed $EC_{50}$ for $rhIL-1{\alpha}-induced$ inhibition of collagen type II, SOX9 and aggrecan mRNA expression as 8.61, 10.79 and $4.47{\mu}g/ml$, respectively. It is observed that mixture showed concentration-dependent anti-inflammatory and cytoprotective ECM preserved effects on the primary cultured rat articular chondrocytes without cytotoxicity.