The Comparison of Sponges and PLGA Scaffolds Impregnated with DBP on Growth Behaviors of Human Intervertebral Disc Cells

DBP 스폰지와 DBP/PLGA 지지체에서의 인간 디스크세포 거동분석 비교

  • Lee, Seon-Kyoung (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology, Chonbuk National University) ;
  • Hong, Hee-Kyung (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology, Chonbuk National University) ;
  • Kim, Su-Jin (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology, Chonbuk National University) ;
  • Kim, Yong-Ki (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology, Chonbuk National University) ;
  • Song, Yi-Seul (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology, Chonbuk National University) ;
  • Ha, Yoon (Department of Neurosurgery, Spine & Spinal Cord Institute, College of Medicine, Yonsei University) ;
  • Lee, Dong-Won (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology, Chonbuk National University) ;
  • Khang, Gil-Son (Department of BIN Fusion Technology & Department of Polymer.Nano Science & Technology, Chonbuk National University)
  • 이선경 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 홍희경 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 김수진 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 김용기 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 송이슬 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 하윤 (연세대학교 의과대학 신경외과) ;
  • 이동원 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 강길선 (전북대학교 BIN 융합공학과, 고분자 나노공학과)
  • Received : 2010.01.14
  • Accepted : 2010.05.03
  • Published : 2010.09.25

Abstract

We fabricated sponge and poly(lactide-co-glycolide)(PLGA) scaffolds impregnated demineralized bone particle(DBP)(DBP/PLGA) and investigated proper condition to proliferation and phenotype maintenance of intervertebral disc(IVD) cells by comparison between DBP/PLGA scaffold and DBP sponge. DBP/PLGA scaffolds were prepared by solvent casting/salt leaching. Human IVD cells were seeded in scaffolds of two types. Cell viability and proliferation according to scaffolds were analyzed by WST assay and SEM. RT-PCR was assessed to measure mRNA expression of aggrecan and type II collagen of human IVD cells. In WST assay results, cell viability in scaffolds impregnated DBP/PLGA scaffold were higher than DBP sponge. We could observe that disc cell mRNA expressed better in DBP/PLGA scaffold than DBP sponge. We concluded that the using of DBP/PLGA in terms of scaffold fabrication for bio-disc with human IVD cells is helpful growth of disc cells maintenance of phenotypes.

본 연구팀은 DBP를 함침시킨 물성이 서로 다른 스폰지와 PLGA 지지체를 제작한 후 세포 부착, 증식 및 형태 유지를 알아보기 위한 실험을 수행하였다. WST 분석법과 SEM 관찰을 통하여 스폰지에 비해서 PLGA 지지체에서의 세포의 증식이 활발한 것을 확인하였고, RT-PCR을 통해 디스크세포에서 특이적으로 발현하는 제 2형 콜라겐과 어그리칸의 발현을 확인하였다. WST 결과, 세포 증식률은 DBP/PLGA 지지체가 DBP를 함침시킨 스폰지보다 세포 증식률이 높음을 확인하였다. 본 연구팀은 스폰지보다 PLGA 지지체가 인간디스크의 표현형 유지 및 증식에 있어서 긍정적인 영향을 미치는 것을 확인하였다.

Keywords

References

  1. R. F. Hochschuler, R. G. Rashbaum, D. Johnson, V. Ohnmeiss, H. Moo, B. L. Vanharanta, M. A. Sachs, R. D. Spivey, and S. H. Guyer, Spine, 12, 295 (1987). https://doi.org/10.1097/00007632-198704000-00019
  2. H. E. Gruber, T. L. Johnson, K. Leslie, J. A. Ingram, D. Martin, G. Hoelscher, D. Banks, L. Phieffer, G. Coldham, and E. N. Hanley, Spine, 27, 1626 (2002). https://doi.org/10.1097/00007632-200208010-00007
  3. J. A. Buckwalter, Spine, 20, 1307 (1995). https://doi.org/10.1097/00007632-199506000-00022
  4. E. Hedbom and D. Heinegard, J. Biol. Chem., 264, 6898 (1989).
  5. E. Hedbom and D. Heinegard, J. Biol. Chem., 268, 27307 (1993).
  6. K. Nishida, J. D. Kang, L. G. Gilbertson, S. H. Moon, J. K. Suh, M. T. Vogt, P. D. Robbins, and C. H. Evans, Spine, 24, 2419 (1999). https://doi.org/10.1097/00007632-199912010-00002
  7. J. Mochida, K. Nishimura, T. Nomura, E. Toh, and M. Chiba, Spine, 21, 1556 (1996). https://doi.org/10.1097/00007632-199607010-00014
  8. C. K. Lee, Spine, 12, 357 (1988).
  9. J. D. Schlegel, J. A. Smith, and R. L. Schleusener, Spine, 21, 970 (1996). https://doi.org/10.1097/00007632-199604150-00013
  10. H. Mizuno, A. K. Roy, C. A. Vacanti, K. Kojima, M. Ueda, and L. J. Bonassar, Spine, 29, 1299 (2004). https://doi.org/10.1097/01.BRS.0000127183.43765.AF
  11. C. A. Seguin, M. D. Grynpas, R. M. Pillar, S. D. Walden, and R. A. Kandal, Spine, 29, 1299 (2004). https://doi.org/10.1097/01.BRS.0000127183.43765.AF
  12. W. B. Tsai, C. H. Chen, J. F. Chen, and K. Y. Chang, J. Mater. Sci. Med., 17, 337 (2006). https://doi.org/10.1007/s10856-006-8234-x
  13. A. Atala, J. Endourol., 14, 49 (2000). https://doi.org/10.1089/end.2000.14.49
  14. N. Zhang, H. Yan, and X. Wen, Brain Res. Rev., 49, 48 (2005). https://doi.org/10.1016/j.brainresrev.2004.11.002
  15. M. R. Urist and L. F. Peltier, Science, 150, 893 (1965). https://doi.org/10.1126/science.150.3698.893
  16. J. Glowacki, L. B. Kaban, J. E. Murray, J. Folkman, and J. B. Mulliken, Lancet, 1, 959 (1981).
  17. G. Khang, M. S. Kim, S. H. Cho, I. Lee, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 1, 9 (2004).
  18. P. Goegan, G. Johnson, and R. Vincent, Toxic in Vitro, 9, 257 (1995). https://doi.org/10.1016/0887-2333(95)00004-R
  19. K. S. Kim, M. H. Cho, H. H. Ahn, S. B. Song, S. J. Seo, M. S. Kim, B. Lee, G. Khang, and H. B. Lee, Tissue Eng. Regen. Med., 4, 168 (2007).
  20. W. Huang, B. Carlsen, I. Wulur, G. Rudkina, K. Ishidaa, B. Wuc, D. T. Yamaguchia, and T. A. Miller, Experimental Cell Res., 299, 325 (2004). https://doi.org/10.1016/j.yexcr.2004.04.051
  21. H. G. Sun, C. Wu, K. Dai, J. Changc, and T. Tang, Biomaterials, 27, 5651 (2006). https://doi.org/10.1016/j.biomaterials.2006.07.027
  22. S. H. Kim, S. J. Yoon, B. S. Choi, H. J. Ha, J. M. Rhee, M. S. Kim, Y. S. Yang, H. B. Lee, and G. Khang, Adv. Exp. Med. Biol., 585, 167 (2006).
  23. B. S. Choi, S. H. Kim, S. J. Yoon, H. J. Ha, M. S. Kim, Y. I. Yang, Y. Son, G. Khang, J. M. Rhee, and H. B. Lee, Tissue Eng. Regen. Med., 3, 295 (2006).
  24. J. W. Jang, M. O. Baek, S. H. Kim, J. H. Choi, J. C. Yang, H. H. Hong, H. K. Hong, J. M. Rhee, B. H. Min, and G. Khang, Polymer(Korea), 33, 104 (2009).