• Title/Summary/Keyword: Agar-degrading bacterium

Search Result 43, Processing Time 0.021 seconds

Isolation and Characterization of an Agar-hydrolyzing Marine Bacterium, Pseudoalteromonas sp. H9, from the Coastal Seawater of the West Sea, South Korea (서해안 해수로부터 분리한 한천분해 해양미생물 Pseudoalteromonas sp. H9의 동정 및 특성 연구)

  • Chi, Won-Jae;Youn, Young Sang;Kim, Jong-Hee;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.134-141
    • /
    • 2015
  • An agarolytic marine bacterium (H9) was isolated from the coastal seawater of the West Sea, South Korea. The isolate, H9, was gram-negative and rod-shaped with a smooth surface and polar flagellum. Cells grew at 20-30℃, between pH 5.0 and 9.0, and in ASW-YP (Artificial Sea Water-Yeast extract, Peptone) media containing 1-5% (w/v) NaCl. The G+C content was 41.56 mol%. The predominant isoprenoid quinone in strain H9 was ubiquinone-8. The major fatty acids (>10%) were C16:1ω7c (34.3%), C16:0 (23.72%), and C18:1ω7c (13.64%). Based on 16S rRNA gene sequencing, and biochemical and chemotaxonomic characterization, the strain was designated as Pseudoalteromonas sp. H9 (=KCTC23887). In liquid culture supplemented with 0.2% agar, the cell density and agarase activity reached a maximum level of OD = 4.32 (48 h) and OD = 3.87 (24 h), respectively. The optimum pH and temperature for the extracellular crude agarases of H9 were 7.0 and 40℃, respectively. Thin-layer chromatography analysis of the agarase hydrolysis products revealed that the crude agarases hydrolyze agarose into neoagarotetraose and neoagarohexaose. Therefore, the new agar-degrading strain, H9, can be applicable for the production of valuable neoagarooligosaccharides and for the complete degradation of agar in bio-industries.

Characterization of Agarase Produced from the Isolated Marine Bacterium Marinomonas sp. SH-2 (해양성 Marinomonas sp. SH-2 균주가 생성하는 agarase의 분리 및 특성조사)

  • Jo, Jeong-Gwon;Lee, Sol-Ji;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.198-203
    • /
    • 2016
  • This study aimed to isolate a novel agarase-producing marine bacterium and characterize its agarase, as agarases are known to produce biofunctional agarooligosaccharides or neo-agarooligosaccharides. A novel agar-degrading bacterium, SH-2, was isolated from the seawater of Namhae in Gyeongnam Province, Korea, and cultured in Marine agar 2216 medium. The 16S rRNA gene sequence represented 99% identity with that of the members of the Marinomonas genus; hence, the isolated bacterium was named Marinomonas sp. SH-2. The crude agarase was prepared from a culture medium of Marinomonas. sp SH-2, and exhibited maximum agarase activity at 170.2 units/l. The optimum conditions were pH 6.0 and 30℃ in 20 mM Tris-HCl buffer. The agarase activity of the bacterium was highly elevated from 20℃(42% relative activity) to 30℃(100%), and 82% activity was shown at 40℃. Its relative activities were less than 40% at over 40℃ after a 0.5 hr exposure. Relative activity was 100% at pH 6.0, while it was 72% and 48% at pH 5.0 and pH 7.0, respectively. The enzyme from Marinomonas sp. SH-2 degraded agarose to neoagarohexaose and neoagarotetraose, indicating that the enzyme is β-agarase. Thus, Marinomonas sp. SH-2 and its enzyme could be practical for applications in food, cosmetic, and medical research.

Isolation and Characterization of a Novel Agar Degrading Bacterium, Alteromonas macleodii subsp. GNUM08120, from Red Macroalgae (홍조류로부터 신규 한천분해미생물 Alteromonas macleodii subsp. GNUM08120의 분리 및 동정)

  • Chi, Won-Jae;Lim, Ju-Hyeon;Park, Da Yeon;Kim, Mu-Chan;Kim, Chang-Joon;Chang, Yong-Keun;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.8-16
    • /
    • 2013
  • An agar-hydrolyzing marine bacterium, strain GNUM08120, was isolated from Sargassum fulvellum collected from Yeongil bay of East Sea of Korea. The isolate was Gram-negative, aerobic, motile with single polar flagellum, and grew at 1-10% NaCl, pH 5.0-8.0, and $15-37^{\circ}C$. G+C content and the predominant respiratory quinone were 46.13 mol% and Q-8, respectively. The major cellular fatty acids were Summed feature 3 (24.5%), $C_{16:0}$ (21.7%), and $C_{18:1}{\omega}7c$ (12.5%). Based on 16S rRNA gene sequence similarity and DNA-DNA hybridization analyses, strain GNUM08120 was identified as a novel subspecies of Alteromonas macleodii, designated Alteromonas macleodii subsp. GNUM08120. Production of agarase by strain GNUM08120 was likely repressed by the effect of carbon catabolite repression caused by glucose. The crude agarase prepared from 12-h culture broth of strain GNUM08120 exhibited an optimum pH and temperature for agarase activity at 7.0 and $40^{\circ}C$, respectively. The crude enzyme produced (neo)agarobiose, (neo)agarotetraose, and (neo)agarohexaose as the hydrolyzed product of agarose.

Molecular Cloning, Overexpression, and Enzymatic Characterization of Glycosyl Hydrolase Family 16 ${\beta}$-Agarase from Marine Bacterium Saccharophagus sp. AG21 in Escherichia coli

  • Lee, Youngdeuk;Oh, Chulhong;Zoysa, Mahanama De;Kim, Hyowon;Wickramaarachchi, Wickramaarachchige Don Niroshana;Whang, Ilson;Kang, Do-Hyung;Lee, Jehee
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.913-922
    • /
    • 2013
  • An agar-degrading bacterium was isolated from red seaweed (Gelidium amansii) on a natural seawater agar plate, and identified as Saccharophagus sp. AG21. The ${\beta}$-agarase gene from Saccharophagus sp. AG21 (agy1) was screened by long and accurate (LA)-PCR. The predicted sequence has a 1,908 bp open reading frame encoding 636 amino acids (aa), and includes a glycosyl hydrolase family 16 (GH16) ${\beta}$-agarase module and two carbohydrate binding modules of family 6 (CBM6). The deduced aa sequence showed 93.7% and 84.9% similarity to ${\beta}$-agarase of Saccharophagus degradans and Microbulbifer agarilyticus, respectively. The mature agy1 was cloned and overexpressed as a His-tagged recombinant ${\beta}$-agarase (rAgy1) in Escherichia coli, and had a predicted molecular mass of 69 kDa and an isoelectric point of 4.5. rAgy1 showed optimum activity at $55^{\circ}C$ and pH 7.6, and had a specific activity of 85 U/mg. The rAgy1 activity was enhanced by $FeSO_4$ (40%), KCl (34%), and NaCl (34%), compared with the control. The newly identified rAgy1 is a ${\beta}$-agarase, which acts to degrade agarose to neoagarotetraose (NA4) and neoagarohexaose (NA6) and may be useful for applications in the cosmetics, food, bioethanol, and reagent industries.

Isolation and Characterization of a Marine Derived Bacterium Glaciecola sp. SL-12 Producing β-agarase (한천분해효소를 생산하는 해양유래 세균 Glaciecola sp. SL-12의 분리 및 특성)

  • Lee, Dong-Geun;Lee, Ok-Hee;Jang, Hyo-Jung;Jang, Min-Kyung;Yoo, Ki-Hwan;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.58-62
    • /
    • 2008
  • A novel agar-degrading bacterium SL-12 was isolated from seashore of Kijang at Busan, Korea, and cultured in marine broth 2216 media. Isolated bacterium SL-12 was identified as Glaciecola genus by 16S rDNA sequencing with 98% identity. The optimum pH of the enzyme activity was 7.0 and the optimum temperature for the reaction was $30^{\circ}C$. The enzyme hydrolyzed neoagarohexaose to yield neoagarobiose as the main product, indicating that the enzyme is ${\beta}$-agarase. Thus, isolated bacterium and the enzyme would be useful for the industrial production of neoagarobiose.

Characterization of Agarase from an Isolated Marine Bacterium, Simiduia sp. SH-1 (해양성 Simiduia sp. SH-1 균주의 분리 및 한천분해효소의 특성조사)

  • Lee, Sol-Ji;Oh, Soo-Jeong;Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.25 no.11
    • /
    • pp.1273-1279
    • /
    • 2015
  • Agarase from a novel agar-degrading bacterium isolated from seawater in Namhae at Gyeongsangnamdo province of Korea was characterized. The SH-1 strain was selected from thousands of colonies on Marine agar 2216 media. Almost full 16S rRNA gene sequence of the agarolytic SH-1 strain showed 99% similarity with that of bacteria of Simiduia genus and named as Simiduia sp. SH-1. Agarase production was growth related, and activity was declined from stationary phase. Secreted agarase was prepared from culture media and characterized. It showed maximum activity of 698.6 units/L at pH 7.0 and 30℃ in 20 mM Tris-HCl buffer. Agarase activity decreased as the temperature increased from an optimum of 30℃, with 90% and 75% activity at 40℃ and 50℃, respectively. Agarase was not heat resistant. Slightly lower agarase activity was observed at pH 6.0 than at pH 7.0, without statistical difference, and 80% and 75% activity were observed at pH 5.0 and 8.0, respectively. Neoagarotetraose and neoagarobiose were the main final products of agarose, indicating that it is β-agarase. Simiduia sp. SH-1 and its β-agarase would be useful for the industrial production of neoagarotetraose and neoagarobiose, which have a whitening effect on skin, delaying starch degradation, and inhibiting bacterial growth.

Biological Analysis of Enzymatic Extracts from Capsosiphon Fulvescens Using the Microbulbifer sp. AJ-3 Marine Bacterium (해양미생물 Microbulbifer sp. AJ-3을 이용한 매생이 효소분해산물의 생리활성 연구)

  • Bae, Jeong-Mi;Cho, Eun-Kyung;Kim, Hye-Youn;Kang, Su-Hee;Choi, Young-Ju
    • Journal of Life Science
    • /
    • v.22 no.5
    • /
    • pp.627-633
    • /
    • 2012
  • $Microbulbifer$ sp. AJ-3 was used to acquire the degrading products from $Capsosiphon$ $fulvescens$ (DPCF), which were investigated to determine its physiological activities. A crude enzyme extract from $Microbulbifer$ sp. AJ-3 hydrolyzes polysaccharide substrates such as agar, agarose, alginic acid, fucoidan, laminaran, starch, and chitin. Among them, agarose, laminaran, and alginic acid showed higher activities, especially alginic acid. The antioxidant activity of DPCF was measured by using 2,2-diphenyl-1-picryl-hydrazyl (DPPH) and superoxide dismutase (SOD)-like activities and were about 32% and 93% at 2 mg/ml, respectively. In addition, the nitrite-scavenging activity of DPCF was about 82%, 53%, and 12% at pH levels of 1.2, 3.0, and 6.0, respectively. To determine the influence of DPCF on alcohol metabolism, the generating activity of reduced-nicotinamide adenine dinucleotide (NADH) by alcohol dehydrogenase (ADH) was measured. The facilitating rate of ADH activity by DPCF was 130% at 2 mg/ml. The tyrosinase inhibitory activity of DPCF was slightly increased in a dose-dependent manner and was about 28% at 2 mg/ml. These results indicated that the enzymatic products from DPCF have a strong antioxidant, nitrite scavenging, and alcohol metabolizing activity.

The Isolation of Agarolytic Agarivorans sp. HY-1 and the Characterization of Its Agarase (한천분해 Agarivorans sp. HY-1의 분리와 한천분해효소의 특성)

  • Lee, Dong-Geun;Cho, Ha-Yeon;Kim, Andre;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.32 no.4
    • /
    • pp.285-289
    • /
    • 2022
  • In this study, the growth characteristics of an agar-degrading bacterium isolated from seawater samples collected from Yeongheungdo, Incheon, and the characteristics of its agarase were analyzed. The 16S rRNA gene sequence of the isolated strain was 95% similar to that of the genus Agarivorans, and thus the isolated strain was named Agarivorans sp. HY-1. When Agarivorans sp. HY-1 was cultured in a marine broth 2216 medium at 27℃ and 250 rpm, it showed maximum growth on day 1 and showed maximum enzymatic activity on day 2. A crude enzyme solution was prepared from secreted agarase in the culture medium. The extracellular agarase of the Agarivorans sp. HY-1 strain showed maximal activity at 40℃ and pH 7.0 (20 mM Tris-HCl) with 591.91 U/l. The agarase exhibited relative activities of 64, 91, 100, 97, 89, and 60% at 20, 30, 40, 50, 60, and 70℃, respectively. At pH 5, 6, 7, and 8, the relative activities were 79, 95, 100, and 55%, respectively. Furthermore, the agarase exhibited >86% residual activity at 20, 30, and 40℃ for 2 hr and >44% residual activity at 50℃ after 2 hr. A TLC analysis confirmed that Agarivorans sp. HY-1 produced α-agarase. As the degradation products of α-agarase have anticancer and antioxidant effects, Agarivorans sp. HY-1 and its agarase may well prove useful.

Isolation and Characterization of a Marine Bacterium Producing Thermotolerant Agarase (내열성 한천분해효소를 생산하는 해양세균의 분리 및 특성)

  • Park Ceun-Tae;Lee Dong-Ceun;Kim Nam Young;Lee Eo-Jin;Jung Jong-Ceun;Lee Jae-Hwa;Heo Moon-Soo;Lee Jung-Hyun;Kim Sang-Jin;Lee Sang-Hyeon
    • Journal of Life Science
    • /
    • v.15 no.6 s.73
    • /
    • pp.884-888
    • /
    • 2005
  • An agar-degrading bacterium was isolated from north-eastern sea of Jeju island and cultured in marine agar 2216 media. Biochemical and morphologicl characteristics and 165 rRNA gene revealed that isolated strain was member of Agarivorans genus, and named Agarivorans sp. JA-1. Agarase was produced as growth-related and expressed regardless of agar presence. Optimal pH was 8 at 50 mM Clycine-NaOH buffer, and activity was maximum at $40^{\circ}C$E Enzymatic activity was maintained over $80\%$ at $60^{\circ}C$t and $70\%$ at $80^{\circ}C$ which is thermotolerant. Hence isolated novel Agarivorans sp. JA-1 strain and its beta-agarase could be used for the production of functional oligosaccharide from agar in solution state.

Isolation and characterization of a marine bacterium Thalassomonas sp. SL-5 producing β-agarase (한천분해효소를 생산하는 해양세균 Thalassomonas sp. SL-5의 분리 및 특성)

  • Lee, Dong-Geun;Kim, Nam-Young;Jang, Min-Kyung;Lee, Ok-Hee;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.70-75
    • /
    • 2007
  • A novel agar-degrading bacterium SL-5 was isolated from seashore of Homigot at Kyung-Buk province, and cultured in marine broth 2216 media. The bacterium SL-5 was identified as Thalassomonas genus by 16S rDNA sequencing with 96% identity. Growth rate was faster at $27^{\circ}C$ than at $37^{\circ}C$ and agarase was produced as growth-related. The optimum pH of the enzyme activity was 7.0 and the optimum temperature for the reaction was $40^{\circ}C$. Although the enzyme had no thermostability, the enzyme activity was remained over 80% at $60^{\circ}C$. The enzyme hydrolyzed neoagarohexaose to yield neoagarobiose as the main product, indicating that the enzyme is $\beta-agarase$. Thus, the enzyme would be useful for the industrial production of neoagarobiose.