• Title/Summary/Keyword: AgNO$_3$

Search Result 668, Processing Time 0.026 seconds

Preparation of Ag Powder from AgNO3 by Wet Chemical Reduction Method1. The Establishment of Optimum Reaction System for the Preparation of Spherical Ag Powder (습식 화학적 환원법에 의한 AgNO3로부터 Ag 분말의 제조 1. 균일한 구형 Ag 분말의 제조를 위한 최적 반응계 확립)

  • Yuna, Ki-Seok;Park, Young-Chul;Yang, Beom-Seok;MIn, Hyun-Hong;Won, Chang-Whan
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.56-63
    • /
    • 2005
  • Ag powder was prepared from $AgNO_3$ by wet chemical reduction method using various reduction agent system involving $AgNO_3$, $AgNO_2$(AgCl) and Ag complex ion aqueous solution. The pure Ag powder could be prepared regardless of reaction system but the particle shape and distribution were affected very much according to the kind of reduction agents and reaction systems. The optimum reaction system for the preparation of the silver powder having the uniform particle shape and size distribution was Ag complex ion aqueous solution-reduction agent system and in particular, $H_2O_2$ and $C_6H_8O_6$as a reduction agent leaded the more uniform particle shape and size distribution.

DeNOx by Hydrocarbon-Selective Catalytic Reduction on Ag-V/γ-Al2O3 Catalyst (Ag-V/γ-Al2O3 촉매상에서 탄화수소-Selective Catalytic Reduction에 의한 질소산화물 저감)

  • Kim, Moon-Chan;Lee, Cheal-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.328-336
    • /
    • 2005
  • In order to remove the NO contained in exhaust gas by the non-selective catalyst reduction method, the catalysts were prepared by varing the loading amount of Ag and V into ${\gamma}-Al_2O_3$. The conversion of $NO_x$ using the prepared catalysts was studied by varying the temperatures, $O_2$ concentrations and $SO_2$ concentrations using. The influence of the catalyst structure on $NO_x$ conversion was studied through the analysis of the physical properties of the prepared catalysts. In the case of $AgV/{\gamma}-Al_2O_3$ catalyst, the $NO_x$ conversion was lower than that of $Ag/{\gamma}-Al_2O_3$ at higher temperatures but higher than that of $Ag/{\gamma}-Al_2O_3$ at lower temperatures. Even though $SO_2$ was contained in the reaction gas, the $NO_x$ conversion did not decrease. Based on the analysis including XRD, XPS, TPR, and UV-Vis DRS before and after the experiments, the experimental results were examined. The results indicated that, $NO_x$ conversion decreased at higher temperatures since Ag oxide could not be maintained well due to the addition of V, whereas it increased at temperatures lower than $300^{\circ}C$ due to the catalytic action of V.

Optimal concentrations of plant growth regulators and AgNO3 for the improvement of regeneration efficiency in Chrysanthemum morifolium 'Ohblang' (국화 '오블랑'의 재생 효율 증진을 위한 식물생장조절제와 AgNO3 적정 농도 선별)

  • Yeo Jin Youn;Yong Joon Yang
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.169-175
    • /
    • 2023
  • A plant regeneration system was developed through shoot organogenesis from in vitro leaf explants of Chrysanthemum morifolium 'Ohblang'. The effects of different concentrations of plant growth regulators and AgNO3 on efficient shoot regeneration and inhibition of browning were evaluated in chrysanthemum. The explants were cultured on MS shoot induction medium supplemented with 12 combination treatments of 6-benzyladenine (BA) 0.5, 1.0 and 2.0 mg/L, and α-naphthaleneacetic acid (NAA) 0.2, 0.5, 1.0 and 2.0 mg/L in darkness for 6 weeks and cultured under a 16/8 h photoperiod for 6 weeks. The highest shoot regeneration was obtained from the explants cultured on the medium with 1.0 mg/L BA and 1.0 mg/L NAA. Based on this result, AgNO3 was added to a shoot induction medium containing MS salts, vitamins, 1.0 mg/L BA, 1.0 mg/L NAA, 30 g/L sucrose, and 6 g/L agar to reduce browning of chrysanthemum leaf explants. In the control treatment without AgNO3, leaf explants turned brown at the cut edge; however, browning was not observed in AgNO3 treatments. Shoot organogenesis was higher at low concentrations of AgNO3 and decreased with an increase in AgNO3 concentration. The explants cultured on shoot induction medium (MS salts, vitamins, 1.0 mg/L BA, 1.0 mg/L NAA) with 1 mg/L of AgNO3 produced the highest shoot regeneration with 2.6 shoots per explants and a browning index of 0.7. When the regenerated shoots were detached from the explants and cultured on MS medium, the shoots were elongated and rooted successfully.

Synthesis and Characterization of the Ag-doped TiO2

  • Lee, Eun Kyoung;Han, Sun Young
    • Elastomers and Composites
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, the photo-deposition method was used to introduce Ag onto the surface of TiO2 to synthesize an Ag-TiO2 composite. The effects of the varying amounts of AgNO3 precursor and annealing time periods on the Ag content in the composites, as well as their antibacterial characteristics under visible light conditions were studied. SEM analysis revealed the spherical morphology of the Ag-TiO2 composite. Compared with TiO2, the Ag particles were too small to be observed. An XPS analysis of the Ag-TiO2 surface confirmed the Ag content and showed the peak intensities for elements such as Ag, Ti, O, C, and Si. The highest Ag content was observed when 33.3 wt.% of AgNO3 and an annealing time of 6 h were employed; this was the optimum annealing time for Ti-Ag-O bonding, in that the lowest number of O bonds and the highest number of Ag bonds were confirmed by XPS analysis. Superior antibacterial properties against Bacillus and Escherichia coli, in addition to the widest inhibition zones were exhibited by the Ag-TiO2 composite with an increased Ag content in a disk diffusion test, the bacterial reduction rate against Staphylococcus aureus and Escherichia coli being 99.9%.

Adsorption and Antibacterial Properties of Metal Treated Activated Carbon (금속 처리된 활성탄소의 흡착과 항균특성)

  • Oh, Won-Chun;Kim, Bum-Soo;Lee, Young-Hoon;Kim, Jong-Gyu;Kim, Myung-Kun;Ko, Young-Shin
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.266-270
    • /
    • 1998
  • The Ag-treated activated carbon was prepared by the impregnation of Ag on the home made activated carbon. We investigated the nitrogen adsorption property, surface structure, and antibacterial activity of the carbon. The BET surface areas of Ag impregnated activated carbon are distributed to $740-1112.2m^2/g$ region. The results of nitrogen adsorption property show that BET surface areas move gradually to lower value with increasing $AgNO_3$ mole concentration. From the SEM results, we observed window blocking effect for micropores of external surface of adsorbent by Ag impregnation. Escherichia coli which is a kind of colon bacillus was used as bacteria for antibacterial test. From these results, we also observed that activity increase gradually to larger range with increasing $AgNO_3$ mole ratio.

  • PDF

Fabrication and Characterization of Ag-coated BCP Scaffold Derived from Sponge Replica Process (스폰지 복제법을 이용한 Ag 코팅 BCP 지지체의 제조 및 평가)

  • Kim, Min-Sung;Kim, Young-Hee;Song, Ho-Yeon;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.418-422
    • /
    • 2010
  • As a starting material, BCP (biphasic calcium phosphate) nano powder was synthesized by a hydrothermal microwave-assisted process. A highly porous BCP scaffold was fabricated by the sponge replica method using 60 ppi (pore per inch) of polyurethane sponge. The BCP scaffold had interconnected pores ranging from $100\;{\mu}m$ to $1000\;{\mu}m$, which were similar to natural cancellous bone. To realize the antibacterial property, a microwave-assisted nano Ag spot coating process was used. The morphology and distribution of nano Ag particles were different depending on the coating conditions, such as concentration of the $AgNO_3$ solution, microwave irradiation times, etc. With an increased microwave irradiation time, the amount of coated nano Ag particles increased. The surface of the BCP scaffold was totally covered with nano Ag particles homogeneously at 20 seconds of microwave irradiation time when 0.6 g of $AgNO_3$ was used. With an increased amount of $AgNO_3$ and irradiation time, the size of the coated particles increased. Antibacterial activities of the solution extracted from the Ag-coated BCP scaffold were examined against gram-negative (Escherichia coli) and gram-positive bacteria (Staphylococcus aureus). When 0.6 g of $AgNO_3$ was used for coating the Ag-coated scaffold, it showed higher antibacterial activities than that of the Ag-coated scaffold using 0.8 g of $AgNO_3$.

Effect of SOx on HC-SCR Kinetics over Ag/Al2O3 Catalyst (SOx 함유 HC-SCR에서 산처리 Ag/Al2O3 촉매의 반응 특성)

  • Lee, Ju-Heon;Park, Jeong-Whan;Kim, Seong-Soo;Yoo, Seung-Joon;Kim, Jin-Gul
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.714-720
    • /
    • 2011
  • Ethanol was used as reducing agent to remove $NO_x$ exhaust from the stationary source. Pre-treatment with sulfuric acid over $Ag/Al_2O_3$ catalyst was dedicated to overcome the $SO_2$ poisoning effect. The $NO_x$ reduction experiment was performed under the simulated condition of power plant The increased surface area with higher CPSI devoted to increase de-$NO_x$ yield. De-$NO_x$ yield of the $NO_x$ exhaust containing 20 ppm of $SO_2$ increased after acid treatment with 0.7% $H_2SO_4$ over 4.0% $Ag/Al_2O_3$, where the increased dispersion of Ag found from the results of XRD and XPS was the dominant factor for the increased de-$NO_x$ yield. However, the reason for the decreased de-$NO_x$ yield with the acid treatment of higher concentration (1.0% and 2.0%) of $H_2SO_4$ was found to be due to the formation of $Ag_2SO_4$ crystallites found from XRD result. Acid-treated $Ag/Al_2O_3$ catalyst showed maximum de-$NO_x$ yield at higher temperature than non-treated $Ag/Al_2O_3$ catalyst did.

항균성 활성화 탄소의 제조 및 특성

  • 오원춘;임창성;오근호;김종규;김명건;고영신
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.10a
    • /
    • pp.99-103
    • /
    • 1997
  • 활성탄의 특성을 이용하여 상업적으로 문제시되고 있는 수질 및 공기 정화용 항균성 Ag-활성탄을 제조하여 흡착특성, 표면구조 및 박테리아 저항성에 대하여 조사하였다. 높은 비표면적을 가진 활성탄에 대하여 AgNO$_3$를 사용하여 Ag-활성탄을 제조하였다. 0.1에서 1.0까지의 AgNO$_3$ 몰농도에 침적된 Ag-활성탄의 비표면적 값은 874-1475 $m^2$/g의 범위에 분포하고 있었으며, AgNO$_3$몰농도가 증가함에 따라 비표면적이 작아지는 경향을 나타내어 흡착된 Ag가 원료 활성탄의 표면구조에 영향을 주었다. Ag는 활성탄 표면의 기공 주위에 고르게 분포되었으며 활성탄의 표면에 물리적 흡착에 의해 존재하는 것으로 나타났다. 항균실험을 위하여 박테리아로서 대장균의 일종인 Escherichia coli를 사용하였으며, 흡착된 Ag의 양이 증가됨에 따라 활성의 범위가 증가되었고, Ag가 흡착되지 않은 활성탄의 경우에 있어서는 활성을 전혀 나타내지 않았다.

  • PDF

The Removal of NOx by Mediated Electrochemical Oxidation Using Ag(II) As a Mediator (Ag(II)를 매개체로 사용하는 전기화학적 매개산화에 의한 NOx 제거)

  • Lee, Min-Woo;Park, So-Jin;Lee, Kune-Woo;Choi, Wang-Kyu
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.3
    • /
    • pp.121-129
    • /
    • 2011
  • The effects of the applied current density, the $AgNO_3$ concentration, the scrubbing liquid flow rate and the NO-air mixed gas flow rate on the NO removal efficiency were investigated by using $Ag^{2+}$ mediated electrochemical oxidation (MEO). Results showed that the NO removal efficiency increased with increasing the applied current density. The effect of the $AgNO_3$ concentration on the NO removal efficiency was negligibly small in the concentration of $AgNO_3$ above 0.1 M. When the scrubbing liquid flow rate increased, the NO removal efficiency was gradually increased. On the other hands, the NO removal efficiency decreased with increasing the NO-air mixed gas flow rate. As a result of the treatment of NO-air mixed gas by using the MEO process with the optimum operating condition and the chemical absorption process using 3 M $HNO_3$ solution as a scrubbing liquid, the removal efficiency of NO and $NO_x$ was achieved as 95% and 63%, respectively.

Influence of Silver Ions in HA Film on Morphology of Macrophages

  • Feng, Q.L.;Kim, T.N.;Kim, J.W.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.50-56
    • /
    • 1998
  • Ion beam assisted deposition (IBAD) was successfully used to produce a dense and ultra-adherent Hydroxyapatite (HA) film on titanium alloy and alumina. Recently it is also proved that the HA coatings on alumina substrate treated with 20 ppm $AgNO_3$ had the structure of $(Ag, Ca)_10(PO_4)6(OH)_2$, which exhibited excellent antimicrobial effects. The present paper aims to morphlogically characterize the adhesion of macrophages on newly developed Ag-HA coated alumina and Ti6A14V substrates and to evaluate the biocompatibility of the coatings in vitro. It can be found that the cell number on alumina of the concentration of $AgNO_3$ in the treatment, the cell number on Ag-HA coatings decreased. Up to 20 ppm $AgNO_3$ by Ag-treatment, the morphological development of the cells on Ag-HA coating was similar to that of the cells on HA coating, suggesting the biotolerance of the Ag-HA coatings.

  • PDF