• 제목/요약/키워드: Ag-$SnO_2$

검색결과 105건 처리시간 0.03초

분말성형법으로 제조된 Ag-SnO2-Bi2O3 접점소재의 미세조직 및 특성 (Microstructure and Characteristics of Ag-SnO2-Bi2O3 Contact Materials by Powder Compaction)

  • 이진규
    • 한국분말재료학회지
    • /
    • 제29권1호
    • /
    • pp.41-46
    • /
    • 2022
  • In this study, we report the microstructure and characteristics of Ag-SnO2-Bi2O3 contact materials using a controlled milling process with a subsequent compaction process. Using magnetic pulsed compaction (MPC), the milled Ag-SnO2-Bi2O3 powders have been consolidated into bulk samples. The effects of the compaction conditions on the microstructure and characteristics have been investigated in detail. The nanoscale SnO2 phase and microscale Bi2O3 phase are well-distributed homogeneously in the Ag matrix after the consolidation process. The successful consolidation of Ag-SnO2-Bi2O3 contact materials was achieved by an MPC process with subsequent atmospheric sintering, after which the hardness and electrical conductivity of the Ag-SnO2-Bi2O3 contact materials were found to be 62-75 HV and 52-63% IACS, respectively, which is related to the interfacial stability between the Ag matrix, the SnO2 phase, and the Bi2O3 phase.

$Ag/{\alpha}-Al_2O_3Ag/SnO_2$ 촉매상에서의 에틸렌 산화반응 (Oxidation of Ethylene over $Ag/{\alpha}-Al_2O_3Ag/SnO_2$)

  • 전기원;한종수;전학제
    • 대한화학회지
    • /
    • 제28권2호
    • /
    • pp.109-113
    • /
    • 1984
  • 여러가지 함량으로 은을 입힌$ Ag/{\alpha}-Al_2O_3$$Ag/SnO_2$상에서의 반응실험과 촉매의 Auger spectra, $SnO_2$에 흡착된 산소의 EPR spectra를 비교하여 담체의 종류가 에틸렌 산화반응의 활성과 선택성에 미치는 영향을 조사하였다. $SnO_2$상에서는 흡착산소중 O-가 반응에 참여하여 ethylene를 완전 산화하는 방향으로 유도하므로써 ethylene oxide 생성의 선택성을 저하시키는 것 같다.

  • PDF

이중 전기방사법을 이용하여 SnO2-Sn-Ag3Sn 나노 입자가 균일하게 내재된 탄소 나노섬유의 합성 (Synthesis of Well-Distributed SnO2-Sn-Ag3Sn Nanoparticles in Carbon Nanofibers Using Co-Electrospinning)

  • 안건형;안효진
    • 한국재료학회지
    • /
    • 제23권2호
    • /
    • pp.143-148
    • /
    • 2013
  • Well-distributed $SnO_2$-Sn-$Ag_3Sn$ nanoparticles embedded in carbon nanofibers were fabricated using a co-electrospinning method, which is set up with two coaxial capillaries. Their formation mechanisms were successfully demonstrated. The structural, morphological, and chemical compositional properties were investigated by field-emission scanning electron spectroscopy (FESEM), bright-field transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). In particular, to obtain well-distributed $SnO_2$ and Sn and $Ag_3Sn$ nanoparticles in carbon nanofibers, the relative molar ratios of the Ag precursor to the Sn precursor including 7 wt% polyacrylonitrile (PAN) were controlled at 0.1, 0.2, and 0.3. The FESEM, bright-field TEM, XRD, and XPS results show that the nanoparticles consisting of $SnO_2$-Sn-$Ag_3Sn$ phases were in the range of ~4 nm-6 nm for sample A, ~5 nm-15 nm for sample B, ~9 nm-22 nm for sample C. In particular, for sample A, the nanoparticles were uniformly grown in the carbon nanofibers. Furthermore, when the amount of the Ag precursor and the Sn precursor was increased, the inorganic nanofibers consisting of the $SnO_2$-Sn-$Ag_3Sn$ nanoparticles were formed due to the decreased amount of the carbon nanofibers. Thus, well-distributed nanoparticles embedded in the carbon nanofibers were successfully synthesized at the optimum molar ratio (0.1) of the Ag precursor to the Sn precursor after calcination of $800^{\circ}C$.

친환경 Ag-SnO2 전기접점재료의 분말야금 공정 최적화 (Process Optimization of Environment-Friendly Ag-SnO2 Electric Contact Materials through a Powder Metallurgy)

  • 김정곤
    • 한국분말재료학회지
    • /
    • 제14권5호
    • /
    • pp.327-332
    • /
    • 2007
  • In a view point of environment, the advanced electric contact material without environmental load element such as cadmium has to be developed. Extensive studies have been carried out on $Ag-SnO_2$ electric contact material as a substitute of Ag-CdO contact materials. In the present study, powder metallurgy including compaction and sintering is introduced to solve the incomplete oxidation problems in manufacturing process of $Ag-SnO_2$ electrical contact material. The $Ag-SnO_2$ contact material, fabricated in this study, was actually set in an electric switchgear of which working voltage is 462V and current is between 25 and 40A, for the purpose of testing its performance. As a result, it exceeded the existing Ag-CdO contact materials in terminal-temperature ascent and main contact resistance.

PL and TL behaviors of Ag-doped SnO2 nanoparticles: effects of thermal annealing and Ag concentration

  • Zeferino, R. Sanchez;Pal, U.;Melendrez, R;Flores, M. Barboza
    • Advances in nano research
    • /
    • 제1권4호
    • /
    • pp.193-202
    • /
    • 2013
  • In this article, we present the effects of Ag doping and after-growth thermal annealing on the photoluminescence (PL) and thermoluminescence (TL) behaviors of $SnO_2$ nanoparticles. $SnO_2$ nanoparticles of 4-7 nm size range containing different Ag contents were synthesized by hydrothermal process. It has been observed that the after-growth thermal annealing process enhances the crystallite size and stabilizes the TL emissions of $SnO_2$ nanostructures. Incorporated Ag probably occupies the interstitial sites of the $SnO_2$ lattice, affecting drastically their emission behaviors on thermal annealing. Both the TL response and dose-linearity of the $SnO_2$ nanoparticles improve on 1.0% Ag doping, and subsequent thermal annealing. However, a higher Ag content causes the formation of Ag clusters, reducing both the TL and PL responses of the nanoparticles.

급속응고한 Ag-X%Zn계 전기접점재료에 미치는 Sn함량의 영향 (The Effect of the Sn contents on Rapidly Solidified Ag-X%Zn Electric Contact Materials)

  • 김종규;장대정;주광일;이은호;엄승열;남태운
    • 한국주조공학회지
    • /
    • 제28권4호
    • /
    • pp.184-189
    • /
    • 2008
  • Ag-Cd alloy has been widely used as an electrical contact material, since Ag-Cd alloy has a good wear resistance and stable contact resistance. But nowadays Ag-Cd alloy is not considered as electrical contact material any more due to detrimental effect on environments. Currently, active researches are being performed on ($Ag-SnO_2$ and $Ag-SnO_{2}-In_{2}O_{3}$) as an alternative solution which can fix the remaining environmental problems. However, $In_{2}O_{3}$ is relatively expensive and Ag-Sn alloy has low wear resistance. Our recent research results show that Ag-X%Zn-Y%Sn has similar physical and chemical properties. In the present study, so we tried to change and to optimize the Zn oxide content to over 6 wt% and Sn oxide content with 0.5, 1.0, 1.5 wt%. Results obtained from the experiments on the Ag-X%ZnO-Y%$SnO_2$ are discussed.

NO2 감응을 위한 Ag 금속입자가 기능화된 SnO2 나노선 기반 저온동작 센서 (Ag-functionalized SnO2 Nanowires Based Sensor for NO2 Detection at Low Operating Temperature)

  • 최명식;김민영;안지혜;최승준;이규형
    • 마이크로전자및패키징학회지
    • /
    • 제27권2호
    • /
    • pp.11-17
    • /
    • 2020
  • 본 연구에서는 Ag 금속입자가 기능화된 SnO2 나노선을 제작 및 저온 NO2 가스 센싱 특성을 평가하였다. Vapor-liquid-solid 공법을 이용하여 SnO2 나노선을 합성하였고, flame chemical vapour deposition 공법을 이용하여 Ag 금속입자를 SnO2 나노선 표면에 기능화하였다. 합성된 Ag 금속입자가 기능화된 SnO2 나노선을 이용하여 50℃에서 NO2 10 ppm에 대한 가스 센싱 테스트를 진행한 결과, 감응도(Rg/Ra) 1.252를 얻었다. 본 연구를 통하여, 금속입자가 기능화된 나노선을 이용한 저온동작 반도체식 가스센서의 산업 적용을 현실화 할 수 있을 것으로 기대된다.

스크린 프린팅 기법을 이용한 $SnO_2-Ag_2O-PtO_x$계 반도체식 마이크로 수소 가스센서에 관한 연구 (Semiconductor type micro gas sensor for $H_2$ detection using a $SnO_2-Ag_2O-PtO_x$ system by screen printing technique)

  • 김일진;한상도;이희덕;왕진석
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.69-74
    • /
    • 2006
  • Thick film $H_2$ sensors were fabricated using $SnO_2$ loaded with $Ag_2O$ and $PtO_x$. The composition that gave the highest sensitivity for $H_2$ was in the weight% ratio of $SnO_2 : PtO_x : Ag_2O$ as 93 : 1 : 6. The nano-crystalline powders of $SnO_2$ synthesized by sol-gel method were screen printed with $Ag_2O$ and $PtO_x$ on alumina substrates. The fabricated sensors were tested against gases like $H_2$, $CH_4$, $C_3H_8$, $C_2H_5OH$ and $SO_2$. The composite material was found sensitive against $H_2$ at the working temperature $130^{\circ}C$, with minor interference of other gases. The $H_2$ gas as low as 100 ppm can be detected by the present fabricated sensors. It was found that the sensors based on $SnO_2-Ag_2O-PtO_x$ system exhibited the high performance, high selectivity and very short response time to $H_2$ at ppm level. These characteristics make the sensor to be a promising candidate for detecting low concentrations of $H_2$.

투명 유전체 (PbO-B2O3-SiO2-Al2O3 계)와 Ag 전극과의 반응에 의한 Ag+과 Sn2+의 거동 (Behavior of Ag+ and Sn2+ After Reaction Between the Transparent Dielectric PbO-B2O3-SiO2-Al2O3 and Ag Electrodes)

  • 홍경준;박준현;허증수;김형준
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.347-352
    • /
    • 2002
  • A transparent dielectric of the $PbO-B_2O_3-SiO_2-A1_2O_3$ system which was a low melting glass has been used for PDP (Plasma Display Panel), but it has a problem which is a reaction to be occurred between a transparent dielectric layer and electrodes (Ag, ITO) after firing. This research was conducted for ion migration of $Ag^+\$ and $Sn^ {2+}$ during firing three different frits of low melting glass. The result showed that yellowing phenomena occurred through a chemical reaction between $Ag^+\$and $Sn^ {2+}$ at 550~58$0^{\circ}C$ for 20~60 min. In addition, it was confirmed that the migration of $Sn^{2+}$ from ITO electrode made a strong effect on the yellowing phenomena.

Mn-SnO2/Ag/Mn-SnO2 3중 다층막의 성능지수와 밴딩 특성 (Figure of merit and bending characteristics of Mn-SnO2/Ag/Mn-SnO2 tri-layer film)

  • 조영수;장건익
    • 한국결정성장학회지
    • /
    • 제31권4호
    • /
    • pp.190-195
    • /
    • 2021
  • 상온에서 PET 기판 위에 Mn-SnO2/Ag/Mn-SnO2 3중 다층막을 RF/DC 마그네트론 스파터링 방식으로 제조하였다. EMP 시뮬레이션 결과에 따라 Mn-SnO2의 막 두께는 40 nm, Ag 막 두께는 13 nm로 고정하였다. 550 nm 파장대역에서 측정한 3중막의 투과율은 82.9에서 88.1 % 범위였으며 면저항은 5.9에서 6.9 Ω/☐로 변화하였다. 가장 높은 성능지수(ϕTC)는 48.1 × 10-3 Ω-1로 나타났다. 곡률반경 4, 5 mm 조건에서 inner 밴딩과 out 밴딩의 굽힘시험을 10,000회 실시한 결과 Mn-SnO2/Ag/Mn-SnO2 3중막의 저항변화율은 약 1.5 %로 탁월한 기계적 유연성을 보였다.