DOI QR코드

DOI QR Code

Microstructure and Characteristics of Ag-SnO2-Bi2O3 Contact Materials by Powder Compaction

분말성형법으로 제조된 Ag-SnO2-Bi2O3 접점소재의 미세조직 및 특성

  • Lee, Jin Kyu (Division of Advanced Materials Engineering, Kongju National University)
  • 이진규 (공주대학교 신소재공학부)
  • Received : 2022.02.18
  • Accepted : 2022.02.25
  • Published : 2022.02.28

Abstract

In this study, we report the microstructure and characteristics of Ag-SnO2-Bi2O3 contact materials using a controlled milling process with a subsequent compaction process. Using magnetic pulsed compaction (MPC), the milled Ag-SnO2-Bi2O3 powders have been consolidated into bulk samples. The effects of the compaction conditions on the microstructure and characteristics have been investigated in detail. The nanoscale SnO2 phase and microscale Bi2O3 phase are well-distributed homogeneously in the Ag matrix after the consolidation process. The successful consolidation of Ag-SnO2-Bi2O3 contact materials was achieved by an MPC process with subsequent atmospheric sintering, after which the hardness and electrical conductivity of the Ag-SnO2-Bi2O3 contact materials were found to be 62-75 HV and 52-63% IACS, respectively, which is related to the interfacial stability between the Ag matrix, the SnO2 phase, and the Bi2O3 phase.

Keywords

Acknowledgement

이 논문은 2020년 공주대학교 학술연구지원사업의 연구 지원에 의하여 연구되었으며 이에 감사드립니다.

References

  1. G. B. Kwon and T. W. Nam: J. Korea Foundry Society, 25 (2005) 226.
  2. J. Chen, J. Feng, B. Xiao, K. H. Zhang, Y. P. Du, Z. J. Hong and R. Zhou: J. Mater. Sci. Technol., 26 (2010) 49. https://doi.org/10.1016/S1005-0302(10)60008-4
  3. Q. Ye and Y. Wang: Mater. Sci. Eng. A, 449-451 (2007) 1045. https://doi.org/10.1016/j.msea.2006.02.359
  4. M. Lungu, S. Gavailiu, T. Canta, M. Lucaci and E. Enescu: J. Optoelectron. Adv. Mater., 8 (2006) 576.
  5. C. P. Wu, D. Q. Yi, J. Li, L. R. Xiao, B. Wang and F. Zheng: J. Alloys Compd., 457 (2008) 565. https://doi.org/10.1016/j.jallcom.2007.03.099
  6. P. B. Joshia, P. Krishnan, R. H. Patel, V. L. Gadgeel, P. Ramakrishnan and V. K. Kaushik: Mater. Lett., 33 (1997) 137. https://doi.org/10.1016/S0167-577X(97)00091-8
  7. C. Xu, D. Yi, C.Wu, H. Liu and W. Li: Mater. Sci. Eng. A, 538 (2012) 202. https://doi.org/10.1016/j.msea.2012.01.031
  8. G. Li, T. Yang, Y. Ma, W. Feng, X. Zhang and X. Fang: Ceram. Int., 46 (2020) 4897. https://doi.org/10.1016/j.ceramint.2019.10.226
  9. G. Schimmel, J. Sorina-Muller, B. Kempf and M. Rettenmayr: Acta. Mater., 58 (2010) 2091. https://doi.org/10.1016/j.actamat.2009.11.051
  10. R. C. Kang, M. K. Lee, W. W. Kim, C. K. Rhee and S. J. Hong: J. Powder Mater., 15 (2008) 37.
  11. J. G. Lee, M. K. Lee, S. J. Hong, H. W. Lee, S. P. Pyun and C. K. Rhee: Mater. Lett., 64 (2010) 35. https://doi.org/10.1016/j.matlet.2009.09.063
  12. J.-G. Kim: J. Powder Mater., 14 (2007) 327.