• Title/Summary/Keyword: Ag thin film

Search Result 377, Processing Time 0.047 seconds

Electrical Properties of ITO/Ag/ITO Conducting Transparent Thin Films (ITO/Ag/ITO 투명전도막의 전기적 특성)

  • Chae, Hong-Chol;Baeg, Chang-Hyun;Hong, Joo-Wha
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.192-196
    • /
    • 2011
  • The multi-layered thin film with an ITO/Ag/ITO structure was produced on PET by using magnetron reactive sputtering method. First, 30 nm of ITO thin film was coated on PET by using normal temperature process. Then 20-52 nm of the Ag thin film was coated. Lastly, 30 nm of ITO thin film was coated on Ag layer. The sample of the 20 nm Ag thin film showed more than 70% transmission and a $2.7{\Omega}/{\Box}$ sheet resistance. When compared to the existing single-layered transparent conducting thin film, multi-layered film was found to be superior with about $5{\Omega}/{\Box}$ less sheet resistance. However, since the Ag layer became thinner, the band gap energy needs to be increased to more than 3.5 eV.

High Conductive Transparent Electrode of ITO/Ag/i-ZnO by In-Line Magnetron Sputtering Method (인-라인 마그네트론 스퍼터링 방법에 의한 고전도성 ITO/Ag/i-ZnO 투명전극)

  • Kim, Sungyong;Kwon, Sangjik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.3
    • /
    • pp.33-36
    • /
    • 2015
  • It has increased several decades in the field of Indium Tin Oxide (ITO) transparent thin film, However, a major problem with this ITO thin film application is high cost compared with other transparent thin film materials[1]. So far, in order to overcome this disadvantage, we show that a transparent ITO/Ag/i-ZnO multilayer thin film electrode would be more cost-effective and it has not only highly transparent but also conductive properties. The aim of this research has therefore been to try and establish how ITO/Ag/i-ZnO multilayer thin film would be more effective than ITO thin film. Herein, we report the properties of ITO/Ag/i-ZnO multilayer thin film by using optical spectroscopic method and measuring sheet resistance. At a certain total thickness of thin film, sheet resistance of ITO/Ag/i-ZnO multilayer was drastically decreased than ITO layer approximately $40{\Omega}/{\Box}$ at same visible light transmittance. (minimal point $5.2{\Omega}/{\Box}$). Tendency, which shows lowly sheet resistive in a certain transmittance, has been observed, hence, it should be suitable for transparent electrode device.

Influence of the Thin-Film Ag Electrode Deposition Thickness on the Current Characteristics of a CVD Diamond Radiation Detector

  • Ban, Chae-Min;Lee, Chul-Yong;Jun, Byung-Hyuk
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.4
    • /
    • pp.131-136
    • /
    • 2018
  • Background: We investigated the current characteristics of a thin-film Ag electrode on a chemical vapor deposition (CVD) diamond. The CVD diamond is widely recognized as a radiation detection material because of its high tolerance against high radiation, stable response to various dose rates, and good sensitivity. Additionally, thin-film Ag has been widely used as an electrode with high electrical conductivity. Materials and Methods: Considering these properties, the thin-film Ag electrode was deposited onto CVD diamonds with varied deposition thicknesses (${\fallingdotseq}50/98/152/257nm$); subsequently, the surface thickness, surface roughness, leakage current, and photo-current were characterized. Results and Discussion: The leakage current was found to be very low, and the photo-current output signal was observed as stable for a deposited film thickness of 98 nm; at this thickness, a uniform and constant surface roughness of the deposited thin-film Ag electrode were obtained. Conclusion: We found that a CVD diamond radiation detector with a thin-film Ag electrode deposition thickness close to 100 nm exhibited minimal leakage current and yielded a highly stable output signal.

The Study of Transmittance and Conductivity in ZnO/Ag Multilayer Films (ZnO/Ag Multilayer의 투과율과 전도성에 관한 연구)

  • Kim, Yun-Hae;Kim, Do-Wan;Murakami, Ri-Ichi;Moon, Kyung-Man;Lee, Sung-Yul
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.39-43
    • /
    • 2011
  • This study has lowered the specific resistance by coating a thin film layer of Ag, playing the role of the electron donor on the ZnO that is used usefully for the transparent conductive oxides. Presently, this study has examined the transmittance and electric characteristics according to the thickness of the Ag thin film layer. Also, this study has observed the transmittance and electric characteristics according to the uppermost ZnO thin film layer of ZnO/Ag/ZnO symmetric film and has conducted the theoretical investigation. In order to observe the transmittance and electric characteristics according to the thickness of the Ag thin film layer and the uppermost ZnO thin film layer, this study conducted the film deposition at room temperature while making use of the DC magnetron sputtering system. In order to see the changes in the thickness of the Ag thin film layer, this study coated a thin film while increasing by 4nm; and, in order to see the changes in the thickness of uppermost ZnO thin film layer, it performed the thin film coating by increasing by 5nm. From the experimental result, the researchers observed that the best transmittance could be obtained when the thickness of the Ag thin film layer was 8nm, but the resistance and mobility increased as the thickness got larger. On the other hand, when the thickness of the uppermost ZnO thin film layer was 20nm, the experiment yielded the best transmittance with excellent electric characteristics. Also, when compared the ZnO/Ag asymmetric film with the ZnO/Ag/ZnO symmetric film, the ZnO/Ag asymmetric film showed better transmittance and electric characteristics.

Microstructure and Properties of ITO and ITO/Ag/ITO Multilayer Thin Films Prepared by D.C. Magnetron Sputtering (D.C. 마그네트론 스퍼터링법으로 제조한 ITO 및 ITO/Ag/ITO 박막의 미세조직과 투명 전극 특성)

  • Choi, Yong-Lak;Kim, Seon-Hwa
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.490-496
    • /
    • 2006
  • ITO monolayer and ITO/Ag/ITO multilayer thin films are prepared by D.C. magnetron sputtering method. Ag layer was inserted for applying ITO to a flexible substrate at low temperature. Carrier concentration and carrier mobility of ITO and ITO/Ag/ITO thin films were measured, the transmittance of them also was done. The amorphous phase was confirmed to be combined in addition to (400) and (440) peaks from XRD result of ITO thin film. As the substrate temperature increased, the preferred orientation of (400) appeared. From the result of application of Ag layer at room temperature, the growth of columnar structure was inhibited, and the amorphous phase formed mostly. The ITO/Ag/ITO thin film represented the transmittance of above 80% when the thickness of Ag layer was 50 ${\AA}$, and the concentration of carrier increased up to above 10 times than that of ITO thin film. Finally, since very low resistance of 3.9${\Omega}/{\square}$ was observed, the effective application of low temperature process is expected to be possible for ITO thin film.

Transparent ITO/Ag/i-ZnO Multilayer Thin Film enhances Lowing Sheet Resistance

  • Kim, Sungyoung;Kim, Sangbo;Heo, Jaeseok;Cho, Eou-Sik;Kwon, Sang Jik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.187-187
    • /
    • 2015
  • The past thirty years have seen increasingly rapid advances in the field of Indium Tin Oxide (ITO) transparent thin film.[1] However, a major problem with this ITO thin film application is high cost compared with other transparent thin film materials.[2] So far, in order to overcome this disadvantage, we show a transparent ITO/Ag/i-ZnO multilayer thin film electrode can be the solution. In comparison with using amount of ITO as a transparent conducting material, intrinsic-Zinc-Oxide (i-ZnO) based on ITO/Ag/i-ZnO multilayer thin film showed cost-effective and it has not only highly transparent but also conductive properties. The aim of this research has therefore been to try and establish how ITO/Ag/i-ZnO multilayer thin film would be more effective than ITO thin film. Herein, we report ITO/Ag/i-ZnO multilayer thin film properties by using optical spectroscopic method and measuring sheet resistance. At a certain total thickness of thin film, sheet resistance of ITO/Ag/i-ZnO multilayer was drastically decreased than ITO layer approximately $40{\Omega}/{\square}$ at same visible light transmittance.(minimal point $5.2{\Omega}/{\square}$). Tendency, which shows lowly sheet resistive in a certain transmittance, has been observed, hence, it should be suitable for transparent electrode device.

  • PDF

Photodissolution, photodiffusion characteristics and holographic grating formation on Ag-doped $As_{40}Ge_{10}Se_{15}S_{35}$ chalcogenide thin film (Ag가 도핑된 칼코게나이드 $As_{40}Ge_{10}Se_{15}S_{35}$ 박막의 광분해, 광확산특성 및 홀로그래픽 격자형성)

  • Chung, Hong-Bay
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.10
    • /
    • pp.461-466
    • /
    • 2006
  • In the present work, we investigated the photodissolution and photodiffusion effect on the interface of Ag/chalcogenide $As_{40}Ge_{10}Se_{15}S_{35}$ thin film by measuring the absorption coefficient, the optical density, the resistance change of Ag layer. It was found that the photodissolutioniphotodiffution ratio depends on the magnitude of photon energy absorbed in the chalcogenide thin film and the depth of photodiffution was proportional to the square root of the exposed time. Also, we have investigated the holographic grating formation with P-polarization states on chalcogenide $As_{40}Ge_{10}Se_{15}S_{35}$ thin film and $As_{40}Ge_{10}Se_{15}S_{35}/Ag$ double layer structure thin film. Holographic gratings have been formed using He-Ne laser (632.8 nm) which have a smaller energy than the optical energy gap, $E_g\;_{opt}$ of the film, i. e., an exposure of sub-bandgap light $(h{\upsilon} under P-polarization. As the results, we found that the diffraction efficiency on $As_{40}Ge_{10}Se_{15}S_{35}/Ag$ double layer structure thin film was more higher than that on single $As_{40}Ge_{10}Se_{15}S_{35}$ thin film. Also, we obtained that the maximum diffraction efficiency was 0.27 %, 1,000 sec on $As_{40}Ge_{10}Se_{15}S_{35}\;(1{\mu}m)/Ag$ (10 nm) double layer structure thin film by (P: P) polarized recording beam. It will offer lots of information for the photodoping mechanism and the analyses of chalcogenide thin films.

The photoinduced birefringence of chalcogenide thin film by the Ag Polarized-Photodoping (Ag 편광-광도핑에 의한 칼코게나이드 박막의 광유기 복굴절)

  • Jang, Sun-Joo;Park, Hwa-Jong;Yeo, Cheol-Ho;Lee, Young-Jong;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.419-421
    • /
    • 2000
  • In this study, we observed the photoinduced birefringence of Ag polarized-photodoping in chalcogenide thin film and the double-layer of Ag doped chalcogenide thin film using the irradiation with the polarized He-Ne laser light. The photoinduced birefringence of Ag polarized-photodoping results in increasing the sensitivity of linearly anisotropy intensity and birefringence(${\Delta}n$). The Ag polarized-photodoping shows improvement of the photoinduced anisotropy property, in polarized photodoping of the chalcogenide thin film. It will offer lots of information for the photodoping mechanism and analysis of chalcogenide thin film.

  • PDF

Thin film solar cell efficiency improvement using the surface plasmon effect (표면 플라즈몬 효과를 이용한 박막형 태양전지 효율향상)

  • Byun, Soo-Hwan;Soh, Hyun-Jun;Yoo, Jeong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.8 no.2
    • /
    • pp.39-43
    • /
    • 2012
  • In spite of many advantages, the practical application of the thin film solar cell is restricted due to its low efficiency compared with the bulk type solar cells. This study intends to adopt the surface plasmon effect using nano particles to solve the low efficiency problem in thin film solar cells. By inserting Ag nano-particles in the absorbing layer of a thin film solar cell, the poynting vector value of the absorbing layer is increased due to the strong energy field. Increasing the value may give thin film solar cells chance to absorb more energy from the incident beam so that the efficiency of the thin film solar cell can be improved. In this work, we have designed the optimal shape of Ag nano-particle in the absorbing laser of a basic type thin film solar cell using the finite element analysis commercial package COMSOL. Design parameters are set to the particle diameter and the distance between each Ag nano-particle and by changing those parameters using the full factorial design variable set-up, we can determine optimal design of Ag nano-particles for maximizing the poynting vector value in the absorbing layer.

Holographic Grating Formation of Chalcogenid Thin Films By the DPSS laser (DPSS laser에 의한 비정질 칼코게나이드 박막의 홀로그래픽 격자형성)

  • Koo, Yong-Woon;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1440-1441
    • /
    • 2008
  • In this paper, we investigated the diffraction grating efficiency on AsSeS and Ag-doped amorphous chalcogenide Ag/AsSeS thin film for used to volume hologram. The Chalcogenide film thickness was 0.5um and Ag thin film was varied from 10nm and 20nm. Diffraction efficiency was obtained from (P:P) polarized Diode Pumped Solid State laser(DPSS, 532.0nm: 200mW) beam on AsSeS and Ag/AsSeS thin films. As a results, diffraction grating was not formed at AsSeS thin film but at Ag-doped AsSeS thin film, diffraction grating was formed well compare with the former.

  • PDF