• Title/Summary/Keyword: Ag@$SiO_2$

Search Result 178, Processing Time 0.028 seconds

Figure of Merit of SnO2/Ag/Nb2O5/SiO2/SnO2 Transparent Conducting Multilayer Film Deposited on Glass Substrate (Glass 위에 증착된 SnO2/Ag/Nb2O5/SiO2/SnO2 다층 투명전도막의 성능지수)

  • Kim, Jin-Gyun;Lee, Sang-Don;Jang, Gun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.81-85
    • /
    • 2017
  • $SnO_2/Ag/Nb_2O_5/SiO_2/SnO_2$ multilayer films were prepared on glass substrate by sequential using RF/DC magnetron sputtering at room temperature. The influence of top $SnO_2$ layer thickness on optical and electrical properties of the multilayer films was investigated. Experimentally measured results exhibit transmittances over 84.3 ~ 85.8% at 550 nm wavelength. As the top $SnO_2$ layer thickness increased from 40 to 55 nm, the sheet resistance (Rs) increased from 5.81 to $6.94{\Omega}/sq$. The Haacke's figure of merit (FOM) calculated for the samples with various $SnO_2$ layer thicknesses was a maximum at 45 nm ($35.3{\times}10^{-3}{\Omega}^{-1}$).

Characterization of Amorphous In-Si-O Multilayer for Low Emissivity Applications (로이 응용을 위한 비정질 In-Si-O 다층구조 특성 평가)

  • Lee, Young Seon;Lee, Sang Yeol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.8
    • /
    • pp.483-485
    • /
    • 2014
  • Transparent amorphous In-Si-O (ISO)/Ag/In-Si-O (ISO) has been reported for low emissivity (low-e) applications. Effective Si doping into the $In_2O_3$ matrix led to a completely amorphous ISO film as well as a low resistivity and a high optical transmittance. The optical and electrical performances were examined by measuring transmittance with a UV-VIS spectrophotometer and resistivity with a Hall effect measurement. Consequently, low-e glass with ISO/Ag/ISO showed a high transparency in the visible region and low emissivity in the infrared region, indicating that ISO is a promising amorphous transparent electrode for low-e glass.

The Intensity Scale of Multiple Scattering of X-rays in Non-Crystalline Solids (비정질 고체에 대한 X선의 다중 산란 강도)

  • 박성수;장윤식;류봉기;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.109-113
    • /
    • 1997
  • When the intensity of X-rays scattered from amorphous materials (very weakly absorbing materials) is measured using standard diffractometric technique, the intensity caused by multiple scattering is obtained in the measured X-ray intensity. Computer programs have been developed to estimate the intensity of the mul-tiple scattering obtained in vitreous SiO2 and B2O3 with various X-rays. Using the above computer program, the intensity ratios of multiple scattering to single scattering in vitreous SiO2 were 0.10~0.16% at CuK$\alpha$, 0.98~5.87% at MoK$\alpha$, and 1.88~17.86% at AgK$\alpha$ in the range of 2$\theta$=0~180$^{\circ}$. Therefore, pri-or to the structural analysis of vitreous SiO2 and B2O3 performed experimentally using X-ray diffractometric technique, the intensity data measured in MoK$\alpha$ and AgK$\alpha$ radiations must be corrected for multiple scattering effect.

  • PDF

Fabrication and Catalysis of $SiO_2$-Coated Ag@Au Nanoboxes

  • Lee, Jae-Won;Jang, Du-Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.588-588
    • /
    • 2013
  • Nanoscale noble-metals have attracted enormous attention from researchers in various fields of study because of their unusual optical properties as well as novel chemical properties. They have possible uses in diverse applications such as devices, transistors, optoelectronics, information storages, and energy converters. It is well-known that nanoparticles of noble-metals such as silver and gold show strong absorption bands in the visible region due to their surface-plasmon oscillation modes of conductive electrons. Silver nanocubes stand out from various types of Silver nanostructures (e.g., spheres, rods, bars, belts, and wires) due to their superior performance in a range of applications involvinglocalized surface plasmon resonance, surface-enhanced Raman scattering, and biosensing. In addition, extensive efforts have been devoted to the investigation of Gold-based nanocomposites to achieve high catalytic performances and utilization efficiencies. Furthermore, as the catalytic reactivity of Silver nanostructures depends highly on their morphology, hollow Gold nanoparticles having void interiors may offer additional catalytic advantages due to their increased surface areas. Especially, hollow nanospheres possess structurally tunable features such as shell thickness, interior cavity size, and chemical composition, leading to relatively high surface areas, low densities, and reduced costs compared with their solid counterparts. Thus, hollow-structured noblemetal nanoparticles can be applied to nanometer-sized chemical reactors, efficient catalysts, energy-storage media, and small containers to encapsulate multi-functional active materials. Silver nanocubes dispersed in water have been transformed into Ag@Au nanoboxes, which show highly enhanced catalytic properties, by adding $HAuCl_4$. By using this concept, $SiO_2$-coated Ag@Au nanoboxes have been synthesized via galvanic replacement of $SiO_2$-coated Ag nanocubes. They have lower catalytic ability but more stability than Ag@Au nanoboxes do. Thus, they could be recycled. $SiO_2$-coated Ag@Au nanoboxes have been found to catalyze the degradation of 4-nitrophenol efficiently in the presence of $NaBH_4$. By changing the amount of the added noble metal salt to control the molar ratio Au to Ag, we could tune the catalytic properties of the nanostructures in the reduction of the dyes. The catalytic ability of $SiO_2$-coated Ag@Au nanoboxes has been found to be much more efficient than $SiO_2$-coated Ag nanocubes. Catalytic performances were affected noteworthily by the metals, sizes, and shapes of noble-metal nanostructures.

  • PDF

Crac-free 나노기공 gold 박막 및 복합박막 제조

  • Kim, Min-Ho;Lee, Jae-Beom;O, Won-Tae;Lee, Dong-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.11.2-11.2
    • /
    • 2009
  • Au-Ag 합금 박막에서 화학적으로 덜 안정한 Ag를 선택적으로 에칭하는 dealloying 기법을 통하여 crack-free 나노기공 gold 박막을 Si 기판에 제조하였다. Au-Ag 합금 박막은 두 가지 방법을 이용하였다: 1) thermal 또는 electron beam 증착법을 이용하여 Au 와 Ag 다층 박막을 Si 기판에 증착시킨 후 열처리를 통한 합금 박막제조; 2) co-thermal 증착법을 이용하여 Au-Ag 합금박막을 Si 기판에 직접 증착. Crack-free 나노기공 gold 박막 제조에 적합한 합금조성을 얻기 위하여 증착 속도, 열처리조건, dealloying 조건등을 조절하였다. Perchloric acid, HClO4 전해질을 이용한 전기화학적 dealloying을 통하여 crack-free 나노기공 gold 박막을 제조하였고, 기공크기를 조절할 수 있었다. 이에 더하여, electrophoretic 방법을 이용하여 나노기공 gold와 semiconductive 양자점 (CdTe 또는 CdSe)의 나노복합박막을 형성시킨 후 특성을 분석하였다.

  • PDF

Ag metal의 급속 열처리에 따른 MgZnO 쇼트키 다이오드 특성연구

  • Na, Yun-Bin;Jeong, Yong-Rak;Lee, Jong-Hun;Kim, Hong-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.231-231
    • /
    • 2013
  • ZnO은 hexagonal wurtzite 구조를 갖는 직접 천이형 화합물 반도체로서, 상온에서 3.37 eV 정도의 wide band gap energy를 가지고 있으며, 60 meV의 큰 엑시톤 결합 에너지(exciton binding energy)를 갖는다. 또한 동종 기판이 존재하고 열, 화학적으로 안정한 상태이며 습식 식각이 가능한 장점으로 인해 각광받고 있다. 또한, ZnO 박막은 우수한 전기 전도성을 나타내며 광학적 투명도가 우수하기 때문에 투명전극으로 많이 이용되어 왔고, 태양 전지(solar cell), 가스 센서, 압전소자 등 많은 분야에서 사용되고 있다. 이와 같은 ZnO박막을 안정적인 쇼트키 다이오드 특성을 얻기 위해서는 쇼트키 배리어 장벽의 형성이 필수적이다. Mg을 ZnO에 첨가하여 MgZnO 박막을 형성할 경우, 금속의 일함수와 MgZnO의 전자친화력 차이가 증가하여 더 큰 쇼트키 장벽 형성이 가능하며, 금속의 일함수가 큰 물질을 사용해야 한다. 또한, 박막의 결함이 적은 박막을 형성해야 하는 에피탁셜 박막이 필요하다. SiC는 높은 포화 전자 드리프트 속도(${\sim}2.7{\times}107$ cm/s), 높은 절연 파괴전압(~3 MV/cm)과 높은 열전도율(~5.0W/cm) 특징을 가지고 있으며, MgZnO/Al2O3의 격자 불일치는 ~19%인 반면에 MgZnO/SiC의 격자 불일치는 ~6%를 가진다. 금속의 일함수가 큰 Ag 금속은 열처리가 될 경우 AgOx가 될 경우 더욱 안정적인 쇼트키 장벽을 형성될 수 있을 것으로 판단된다. 본 연구에서는 쇼트키 접합을 형성하기 위해 금속의 일함수가 큰 Ag 금속을 사용하였으며, Al2O3 기판과 6H-SiC 기판위에 MgZnO(30 at.%) 박막을 증착하였다. 증착 후에 Ag를 증착 한 뒤 급속 열처리를 하였다. 열처리된 MgZnO의 경우 열처리 하지않은 소자보다 약 $10^5$ 이상의 우수한 on/off 특성을 보였다.

  • PDF

Electrical and optical studies of organic light emitting devices using Ag and $SiO_2$ / poly(p-phenylene vinylene)(PPV) nanocomposites

  • Lee, Cho-Young;Park, Hyung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.367-367
    • /
    • 2007
  • Polymer/nanoparticle hybrids have been increasingly studied because of their enhanced properties for organic light emitting devices (OLEDs). In this study, we made poly(p-phenylene vinylene) (PPV) nanohybrid films by incorporation of Ag and $SiO_2$ nanoparticles into the PPV. A possible interaction between nanoparticles was investigated and especially we focused whether there is a change in the interaction between $SiO_2$ or Ag nanoparticles and matrix or not. The current characteristics of PPV nanohybrid films were analyzed by I-V and EL measurements. The optical properties were also investigated by UV-Vis spectroscopy and photoluminescence measurements.

  • PDF

Removal of Reactive Orange 16 by the Ag/TiO2 Composite Produced from Micro-emulsion Method (마이크로에멀젼 방법에 의해 제조된 Ag/TiO2의 Reactive Orange 16 제거에 관한 연구)

  • Lee, SiJin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.11
    • /
    • pp.5-10
    • /
    • 2019
  • For the development of long-wavelength responding photocatalyst, Ag was applied to commercial $TiO_2$ to produce $Ag/TiO_2$ photocatalyst. Moreover, micro-emulsion method was used in order to increase the efficiency of the photocatalyst by enhancing the dispersion of Ag. Physical properties of the manufactured catalyst were analyzed by scanning electron microscopy (SEM), field emission transmission electron microscopy (FE-TEM) and diffuse reflectance spectroscopy (DRS). For the catalytic performance measurement, RO 16 (Reactive Orange 16) removal was performed with 25 ppm RO 16 under UV-A (365 nm) irradiation. In addition, ball milling and dip-coating method were used to synthesize the photocatalyst for the comparison of the outcomes of using different synthesis methods. In addition, catalytic performance was improved by varying the Ag content and surfactant content. The highest catalytic performance was shown at $Ag/TiO_2$ synthesized by micro-emulsion method with 2 wt% of Ag content, and 0.5 g of the surfactant.

Plasmonic Nanosheet towards Biosensing Applications

  • Tamada, Kaoru
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.105-106
    • /
    • 2013
  • Surface plasmon resonance (SPR) is classified into the propagating surface plasmon (PSP) excited on flat metal surfaces and the local surface plasmon (LSP) excited by metalnanoparticles. It is known that fluorescence signals are enhanced by these two SPR-fields.On the other hand, fluorescence is quenched by the energy transfer to metal (FRET). Bothphenomena are controlled by the distance between dyes and metals, and the degree offluorescence enhancement is determined by the correlation. In this study, we determined thecondition to achieve the maximum fluorescence enhancement by adjusting the distance of ametal nanoparticle 2D sheet and a quantum dots 2D sheet by the use of $SiO_2$ spacer layers. The 2D sheets consisting of myristate-capped Ag nanoparticles (AgMy nanosheets) wereprepared at the air-water interface and transferred onto hydrophobized gold thin films basedon the Langmuir-Schaefer (LS) method [1]. The $SiO_2$ sputtered films with different thickness (0~100 nm) were deposited on the AgMy nanosheet as an insulator. TOPO-cappedCdSe/CdZnS/ZnS quantum dots (QDs, ${\lambda}Ex=638nm$) [2] were also transferred onto the $SiO_2$ films by the LS method. The layered structure is schematically shown in Fig. 1. The result of fluorescence measurement is shown in Fig. 2. Without the $SiO_2$ layer, the fluorescence intensity of the layered QD film was lower than that of the original QDs layer, i.e., the quenching by FRET was predominant. When the $SiO_2$ thickness was increased, the fluorescence intensity of the layered QD film was higher than that of the original QDs layer, i.e., the SPR enhancement was predominant. The fluorescence intensity was maximal at the $SiO_2$ thickness of 20 nm, particularly when the LSPR absorption wavelength (${\lambda}=480nm$) was utilized for the excitation. This plasmonic nanosheet can be integrated intogreen or bio-devices as the creation point ofenhanced LSPR field.

  • PDF

Effects of UV irradiation on the crystalline phase with$Li_2O-Al_2O_3-SiO_2-K_2O$system ($Li_2O-Al_2O_3-SiO_2-K_2O$ 계어서의 UV조사 시간에 따른 결정상 생성에 관한 연구)

  • 이명원;강원호
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.166-171
    • /
    • 1997
  • The photomachinable glass-ceramics of Ag and CeO$_{2}$ added to Li$_{2}$O-Al$_{2}$O$_{3}$-SiO$_{2}$-K$_{2}$O glass system was investigated as a function of UV irradiation time. The temperature of optimum nucleation and crystal growth temperature were confirmed at 525.deg. C, 630.deg. C respectively using DTA and TMA. The phases of Li$_{2}$O.SiO$_{2}$ habit were lath-like and/or dendrite type and [002] direction of Li$_{2}$O.SiO$_{2}$ / Li$_{2}$O.2SiO$_{2}$ phases were changed according to the UV irradiation time by 400 W, 362 nm UV light source. Under that condition, the optimum UV irradiation time was 5 min.

  • PDF