Browse > Article
http://dx.doi.org/10.4313/JKEM.2017.30.2.81

Figure of Merit of SnO2/Ag/Nb2O5/SiO2/SnO2 Transparent Conducting Multilayer Film Deposited on Glass Substrate  

Kim, Jin-Gyun (Department of Materials Engineering, Chungbuk National University)
Lee, Sang-Don (Department of Electrical Engineering, Gangneung-Wonju National University)
Jang, Gun-Eik (Department of Materials Engineering, Chungbuk National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.30, no.2, 2017 , pp. 81-85 More about this Journal
Abstract
$SnO_2/Ag/Nb_2O_5/SiO_2/SnO_2$ multilayer films were prepared on glass substrate by sequential using RF/DC magnetron sputtering at room temperature. The influence of top $SnO_2$ layer thickness on optical and electrical properties of the multilayer films was investigated. Experimentally measured results exhibit transmittances over 84.3 ~ 85.8% at 550 nm wavelength. As the top $SnO_2$ layer thickness increased from 40 to 55 nm, the sheet resistance (Rs) increased from 5.81 to $6.94{\Omega}/sq$. The Haacke's figure of merit (FOM) calculated for the samples with various $SnO_2$ layer thicknesses was a maximum at 45 nm ($35.3{\times}10^{-3}{\Omega}^{-1}$).
Keywords
TMT structure; Transmittance; Sheet resistance; Figure of merit;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Wang, T. Brezesinski, M. Antonietti, and B. Smarsly, ACS Nano, 3, 1373 (2009). [DOI: https://doi.org/10.1021/nn900108x]   DOI
2 F. Rohlfing, D. Brezesinski, T. Rathousky, J. Feldhoff, A. Oekermann, T. Waga, M. Smarsly, and B. Ady, Mater., 18, 2980 (2006).
3 F. J. Yusta, M. L. Hitchman, and H, Shamlian, J. Mater. Chem., 7, 1421 (1997). [DOI: https://doi.org/10.1039/a608525c]   DOI
4 T. P. Chow, M. Ghezzo, and B. J. Baliga, J. ElecTrochem. Soc., 129, 1040 (1982). [DOI: https://doi.org/10.1149/1.2124012]   DOI
5 J. G. Kim, S. M. Yoon, and G. E. Jang, Journal of Ceramic Processing Research, 17, 80 (2016).
6 J. G. Kim and G. E. Jang, Jounal of Ceramic Processing Research, 17, 103 (2016).
7 A. Dhar and T. L. Alford, J. Appl. Phys., 112, 103113 (2012).   DOI
8 A. Indluru and T. L. Alford, J. Appl. Phys., 105, 123528 (2009). [DOI: https://doi.org/10.1063/1.3153977]   DOI
9 V. Sharma, S. Singh, K. Asokan, and K. Sachdev, Nuclear Instruments and Methods in Physics Research B, 379, 141 (2016). [DOI: https://doi.org/10.1016/j.nimb.2016.04.059]   DOI
10 Y. Guo, W. Cheng, J. Jiang, S. Zuo, F. Shi, and J. Chu, Vacuum, 131, 164 (2016). [DOI: https://doi.org/10.1016/j.vacuum.2016.06.014]   DOI
11 J. H. Kim, Y. J. Moon, S. K. Kim, Y. Z. Yoo, and T. Y. Seong, Ceramics International, 41, 14805 (2015). [DOI: https://doi.org/10.1016/j.ceramint.2015.08.001]   DOI
12 G. Haacke, J. Appl. Phys., 47, 4086 (1976). [DOI: https://doi.org/10.1063/1.323240]   DOI
13 S. H. Yu, C. H. Jia, H. W. Zheng, L. H. Ding, and W. F. Zhang, Materials Letters, 85, 68 (2012). [DOI: https://doi.org/10.1016/j.matlet.2012.06.108]   DOI
14 A. Bou, P. Torchio, D. Barakel, F. Thierry, P. Y. Thoilon, and M. Ricci, Proc. of SPIE, 8987, 898706 (2014). [DOI: https://doi.org/10.1117/12.2039067]