• 제목/요약/키워드: Aerosol deposition

검색결과 203건 처리시간 0.025초

그래핀 옥사이드의 에어로졸 분무열분해 공정을 통한 면직물의 전기전도성 및 물성 평가 (Application and Functionalization of Graphene Oxide on Cotton Fabric Via Aerosol Spray Pyrolysis)

  • 엄현지;조길수
    • 한국의류산업학회지
    • /
    • 제24권1호
    • /
    • pp.138-145
    • /
    • 2022
  • Today, graphene loaded textiles are being considered promising smart clothing due to their high conductivity. In this study, we reported reduced graphene oxide(r-GO) deposited pure cotton fabrics fabricated with a colloidal solution of graphene(GO), using a one-step aerosol spray pyrolysis(ASP) process and their potential application on smart textiles. The ASP process is advantageous in that it is easily implementable and can be applied for continuous processing. Moreover, this process has never been applied to deposit r-GO on pure cotton fabric. The field emission-scanning microscopy (FE-SEM) observation, Fourier transform-infrared(FT-IR) analysis, Raman spectroscopy, X-ray diffraction(XRD) analysis, and ultraviolet transmittance(UVT) were used to evaluate material properties of the r-GO colloids. The resistance was also measured to evaluate the electrical conductivity of the specimens. The results revealed that the r-GO was successfully deposed on specimens, and the specimen with the highest electrical conductivity demonstrated an electrical resistance value of 2.27 kΩ/sq. Taken together, the results revealed that the ASP method demonstrated a high potential for effective deposition of r-GO on cotton fabric specimens and is a prospect for the development of conductive cotton-based smart clothing. Therefore, this study is also meaningful in that the ASP process can be newly applied by depositing r-GO on the pure cotton fabric.

Characteristics of Ambient Metals: Size Segregated Ambient Concentrations and Dry Deposition Fluxes at Four Sites in Kunpo in 2000

  • Kim, Yong-Pyo;Yun, Hui-Jung;Yi, Seung-Muk
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제18권E2호
    • /
    • pp.57-68
    • /
    • 2002
  • Atmospheric dry deposition fluxes and size segregated concentrations of particulate metal elements were measured at four sites in Kunpo, a small city in the Seoul metropolitan area in Korea. At each site, aerosol samples were collected by dry deposition plates, a cascade impactor, and a coarse panicle rotary impactor during four sampling periods. At all sites, the average fluxes of metals measured during daytime were higher than nighttime fluxes due to higher wind speeds and higher ambient concentrations during daytime. The average fluxes of crustal elements (Al, Ca) were 1∼2 orders of magnitude higher than anthropogenic elements (As, Cd, Cu, Mn, Ni, Pb, and Zn). The daytime fluxes of Al and Ca were between 90 and 12000 $\mu\textrm{g}$ m$\^$-2/ day$\^$-1/, and the nighttime fluxes of Al and Ca were between 20 and 2200 $\mu\textrm{g}$ m$\^$-2/ day$\^$-1/. The daytime fluxes of Pb, a typical anthropogenic element, were between 20 and 160$\mu\textrm{g}$ m$\^$-2/ day$\^$-1/, and the nighttime fluxes of Pb were between ND and 100$\mu\textrm{g}$ m$\^$-2/ day$\^$-1/. Also the ambient metal concentrations during daytime were higher than nighttime. Based on a dust emission estimation study in Kunpo, it was found that dust emissions during daytime are higher than nighttime. The concentrations of crustal elements were higher than anthropogenic elements. The distributions of heavy metals were mainly in small particles (D$\_$p/ 9㎛). The fraction of crustal elements in the large particles (D$\_$p/> 9㎛) were higher than anthropogenic elements.

Potential Biases Arising in the Use of Cascade Impactors to Estimate Respiratory Tract Deposition Patterns of Lead-Acid Battery Plant Aerosols

  • Hodgkins Douglas G.;Robins Thomas G.;Hinkamp David L.;Levine Steven P.;Schork M. Anthony;Krebs William H.
    • 대한예방의학회:학술대회논문집
    • /
    • 대한예방의학회 1994년도 교수 연수회(환경)
    • /
    • pp.585-595
    • /
    • 1994
  • The region of the respiratory tract where inhaled particles deposit can have important implications for the causation of local or systemic toxic effects. For most aerosols of occupational importance, respiratory tract deposition can be predicted from the aerodynamic diameter of the particles. With the advent of cascade impactors, particularly those of personal sampler size, the determination of the aerodynamic diameters of aerosols has become more common. Some limitations of cascade impactor use are well recognized (e.g., particle bounce and substrate overloading) and are generally correctable. However, two important limitations of the instruments may not be receiving adequate attention: relative humidity effects on potentially hygroscopic aerosols and the collection characteristics of fibrous aerosols as compared to their actual deposition site potential. The results of this study, when compared to results of previous controlled laboratory trials, suggest that, while potentially hygroscopic lead aerosols from lead acid battery plant operations do not appear to be affected by changes in plant environmental humidity levels, the potential - exists for significant size changes upon inhalation. Secondly, fibers were detected in aerodynamic size ranges that would be associated with deep lung deposition; however, upon microscopic examination, these same fibers would actually be predicted to deposit in the upper airways. This study suggests that the physicalchemical properties and morphological features of an aerosol should be carefully considered by industrial hygienists before cascade impactors are used in attempts to predict the effects of inhaled aerosols.

  • PDF

상온 진공 분말 분사공정에 의해 제조된 TiO2 광촉매 막의 두께변화에 따른 광촉매 특성 (Effect of Film Thickness on the Photocatalytic Performance of TiO2 Film Fabricated by Room Temperature Powder Spray in Vacuum Process)

  • 김근영;류정호;한병동;최종진;윤운하;이병국;박동수;박찬
    • 한국세라믹학회지
    • /
    • 제45권12호
    • /
    • pp.839-844
    • /
    • 2008
  • $TiO_2$ is an environment-friendly semiconducting material, and it has photocatalytic and hydrophilic effect. There are a lot of reports on the photocatalytic characteristics of $TiO_2$, such as organic pollutants resolving, anti-bacterial, and self-purification material. In this paper, $TiO_2$ micron-sized powders were deposited on the glass by room temperature powder spray in vacuum process, so called aerosol deposition (AD), and nano-grained $TiO_2$ photocatalytic thin films were fabricated. The thickness of the films were controlled by changing the number of deposition cycle. Morphologies and characteristics of the AD-$TiO_2$ thin films were examined by SEM, TEM, XRD, and UV-Visible Spectrophotometer. As the thickness of $TiO_2$ films increased, surface roughness increased. By this increment, the reaction area between film and pollutant was enlarged, resulting in better photocatalytic property.

상압에서 열분해법을 이용한 실리콘 입자 제조 (Formation of Silicon Particles Using $SiH_4$ pyrolysis at atmospheric pressure)

  • 우대광;남경탁;김영길;김광수;강윤호;김태성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.126-129
    • /
    • 2007
  • The particle formation using pyrolysis has many advantages over other particle manufacturing techniques. The particles by pyrolysis have relatively uniform size and chemical composition. Also, we can easily produce high purity particles. Thus, we studied the formation of silicon particles by pyrolysis of 50% $SiH_4$ gas diluted in Ar gas. A pyrolysis furnace was used for the thermal decomposition of $SiH_4$ gas at $800^{\circ}C$ and atmospheric pressure. The aerosol flow from furnace is separated into two ways. The one is to the Scanning Mobility Particle Sizer (SMPS) for particle size distribution measurement and the other is to the particle deposition system. The produced silicon particles are deposited on the wafer in the deposition chamber. SEM measurement was used to compare the particle size distribution results from the SMPS. Depending on the experimental conditions, particles of high concentration in the $30\sim80$ nm size range were generated.

  • PDF

Effects of Asian Dust (KOSA) Deposition Event on Bacterial and Microalgal Communities in the Pacific Ocean

  • Maki, Teruya;Ishikawa, Akira;Kobayashi, Fumihisa;Kakikawa, Makiko;Aoki, Kazuma;Mastunaga, Tomoki;Hasegawa, Hiroshi;Iwasaka, Yasunobu
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권3호
    • /
    • pp.157-163
    • /
    • 2011
  • Atmospheric aerosol deposition caused by Asian dust (KOSA) events provide nutrients, trace metals, and organic compounds over the Pacific Ocean that enhance ocean productivity and carbon sequestration and, thus, influence the atmospheric carbon dioxide concentrations and climate. Using dust particles obtained from the snow layers on Mt. Tateyama and the surface sand of Loess Plateau in incubation experiments with natural seawater samples on a shipboard, we demonstrate that dust-particle additions enhanced the bacterial growth on the first day of incubation. Gram-positive bacterial group and alpha-proteobacteria were specifically detected form seawater samples including the mineral particles. Although the remarkable dynamics of trace elements and nutrients depend on dust-particle additions, it is possible that organic compounds present in the mineral particles or transported microbial cells could also contribute to an increase in the quantities of bacteria. The chlorophyll concentrations at fractions of every size indicated a similar pattern of change between the seawater samples with and without the dust-particle additions. In contrast, the chlorophyll measurement using submersible fluorometer revealed that the dynamics of phytoplankton composition were influenced by the dust-particles treatments. We conclude that the phytoplankton that uses the bacterial products would increase their biomass. We show that KOSA deposition can potentially alter the structures of bacterial communities and indirectly influence the patterns of marine primary production in the Pacific Ocean.

산성강하물의 침착량과 동태 해명에 관한 연구 - 필터팩을 이용한 춘천과 서울의 건성강하물의 농도 측정 (A Study on the Behavior and Deposition of Acid Precipitation-Measurement of Dry Deposition in Chunchon and Seoul by Using Filter Pack Method)

  • 김만구;박기준;강미희;황훈;이보경;이동수
    • 한국대기환경학회지
    • /
    • 제15권1호
    • /
    • pp.53-61
    • /
    • 1999
  • Acid aerosol and gas concentrations ($SO_4^{2-}$, $NO_3^-$, $HNO_3$, $SO_2$, and $NH_3$) were measured at Chunchon and Seoul, Korea using filter pack method during one year from October 1996 to september 1997. The samples were collected during 24 hours every Wednesday in a week from 10 A.M. with 10$\ell$/min of sample flow. Concentration of $HNO_3$, $SO_2$ and $NH_3$ gases showed typical seasonal variation. The $HNO_3$ showed the highest in summer and annual mean concentrations were 0.42 ppb and 0.57 ppb at Chunchon and Seoul, respectively. The $SO_2$ showed the highest in winter and annual mean concentration was 5.59 ppb at Chunchon. The $NH_3$ showed the highest in early summer and annual mean concentration were 5.15 ppb and 6.28 ppb at Chunchon and Seoul, respectively.

  • PDF

진공상온분사(VKS) 공정에서의 비행입자 가속 기구 및 속도제어를 위한 가스 유량 효과에 관한 연구 (Research on Acceleration Mechanism of Inflight Particle and Gas Flow Effect for the Velocity Control in Vacuum Kinetic Spray Process)

  • 박형권;권주혁;이일주;이창희
    • 한국재료학회지
    • /
    • 제24권2호
    • /
    • pp.98-104
    • /
    • 2014
  • Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.

노즐 형상과 기판의 위치 변화가 초음속 유동에 미치는 영향에 관한 수치해석 연구 (Numerical study on the effects of nozzle geometry and substrate location in the supersonic flow)

  • 박정재;윤석구;김호영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.58.2-58.2
    • /
    • 2010
  • This paper deals with the simulation of solid particle coating technology via supersonic nozzle in vacuum environment to devote as an aerosol-deposition device. In order to improve efficiencies of nozzle and coating process, effects of shockwave, nozzle geometry, and substrate location were studied computationally under a fixed chamber pressure of 0.01316 bar which is nearly vacuous. Shockwave is the important factor affect to entire flow because shockwave in the jet flow dissipates the kinetic energy of the flow in the supersonic condition. Results show that various nozzle geometries have significant effect on the supersonic flow and we know that the supersonic nozzle should be optimized to minimize the loss of the flow. Another parameter, the distance between substrate and nozzle tip, shows little effect in this study.

  • PDF

Experimental Studies on Wet Scavenging of Atmospheric Aerosols by Rain Drops

  • Park Jeong-Ho;Suh Jeong-Min;Choi Kum-Chan
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제21권E3호
    • /
    • pp.87-94
    • /
    • 2005
  • Wet scavenging by rain drops is a most important removal process of air pollutants. In order to study the scavenging mechanisms of aerosol particles, the characteristics of chemical components in the rain water were examined as a function of the amount of rainfall. Rain water were collected continuously and separated into the soluble and insoluble components. The elemental concentrations in both components were determined by a PIXE analysis. The physical and chemical characteristics of atmospheric aerosols during the rainfall events were measured simultaneously. The elemental concentrations in rain water decreased substantially just after rain started and then gradually declined in subsequential rain fall exceeding 1.0 mm. The large particles were scavenged more easily than the fine particles. Fe, Ti and Si in rain water were in high insoluble state. Contrarily, almost whole of S was dissolved in rain water.