DOI QR코드

DOI QR Code

Effects of Asian Dust (KOSA) Deposition Event on Bacterial and Microalgal Communities in the Pacific Ocean

  • Received : 2010.12.28
  • Accepted : 2011.04.09
  • Published : 2011.09.30

Abstract

Atmospheric aerosol deposition caused by Asian dust (KOSA) events provide nutrients, trace metals, and organic compounds over the Pacific Ocean that enhance ocean productivity and carbon sequestration and, thus, influence the atmospheric carbon dioxide concentrations and climate. Using dust particles obtained from the snow layers on Mt. Tateyama and the surface sand of Loess Plateau in incubation experiments with natural seawater samples on a shipboard, we demonstrate that dust-particle additions enhanced the bacterial growth on the first day of incubation. Gram-positive bacterial group and alpha-proteobacteria were specifically detected form seawater samples including the mineral particles. Although the remarkable dynamics of trace elements and nutrients depend on dust-particle additions, it is possible that organic compounds present in the mineral particles or transported microbial cells could also contribute to an increase in the quantities of bacteria. The chlorophyll concentrations at fractions of every size indicated a similar pattern of change between the seawater samples with and without the dust-particle additions. In contrast, the chlorophyll measurement using submersible fluorometer revealed that the dynamics of phytoplankton composition were influenced by the dust-particles treatments. We conclude that the phytoplankton that uses the bacterial products would increase their biomass. We show that KOSA deposition can potentially alter the structures of bacterial communities and indirectly influence the patterns of marine primary production in the Pacific Ocean.

Keywords

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Aoki, K., Watanabe, K. (2009). Measurements of atmospheric aerosol at Mt. Tateyama, Japan. Earozoru Kenkyu 24, 112-116. (in Japanese)
  3. APHA, AWWA, WPCF (1989) Standard methods for the examination of water and wastewater, 17th edn. American Public Health Association, Washington, D.C.
  4. Baker, A.R., Jickells, T.D., Witt, M., Linge, K.L. (2006) Trends in the solubility of iron, aluminium, manganese and phosphorus in aerosol collected over the Atlantic Ocean. Marine Chemistry 98, 43-58. https://doi.org/10.1016/j.marchem.2005.06.004
  5. Beutler, M., Wiltshire, K.H., Meyer, B., Moldaenke, C., Luring, C., Meyerhofer, M., Hansen, U.P., Dau, H. (2002) A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynthesis Research 72, 39-53. https://doi.org/10.1023/A:1016026607048
  6. Blank, M., Leinen, M., Prospero, J.M. (1985) Major Asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific. Nature 314, 84-86. https://doi.org/10.1038/314084a0
  7. Bonnet, S., Guieu, C., Chiaverinni, J., Ras, J., Stock, A. (2005) Effect of atmospheric nutrients on the autotrophic communities in a low nutrient, low chlorophyll system. Limnology Oceanography 50, 1810-1819. https://doi.org/10.4319/lo.2005.50.6.1810
  8. Cole, J.J. (1982) Interactions between bacteria and algae in aquatic ecosystems. Annual Review of Ecology, Evolution, and Systematics 13, 291-314. https://doi.org/10.1146/annurev.es.13.110182.001451
  9. Donaghay, P.L., Liss, P.S., Duce, R.A., Kester, D.R., Hanson, A.K., Villareal, T., Tindale, N.W., Gifford, D.J. (1991) The role of episodic atmospheric nutrient inputs in the chemical and biological dynamics of oceanic ecosystems. Oceanography 4, 62-70. https://doi.org/10.5670/oceanog.1991.04
  10. Duce, R.A., Tindale, N.W. (1991) Atmospheric transport of iron and its deposition in the ocean; Chemistry and biology of iron and other trace metals. Limnology Oceanography 36, 1715-1726. https://doi.org/10.4319/lo.1991.36.8.1715
  11. Erickson III, D.J., Hernandez, J.L., Ginoux, P., Gregg, W.W., McClain, C., Christian, J. (2003) Atmospheric iron delivery and surface ocean biological activity in the Southern Ocean and Patagonian region. Geophysic Research Letter 30, 1609-1613. https://doi.org/10.1029/2003GL017241
  12. Haines, K.C., Guillard, R.R.L. (1974) Growth of vitamin B12-requiring marine diatoms in mixed laboratory cultures with vitamin $B_{12}$-producing marine bacteria. Journal of Phycology 10, 245-252.
  13. Herut, B., Zohary, T., Krom, M.D., Mantoura, R.F.C., Pitta, P., Psarra, S., Rassoulzadegan, F., Tanaka, T., Thingstad, T.F. (2005) Response of east Mediterranean surface water to Saharan dust: on-board microcosm experiment and field observations. Deep-Sea Res. II 52, 3024-3040. https://doi.org/10.1016/j.dsr2.2005.09.003
  14. Hervàs, A., Camarero, L., Reche, I., Casamayor, E.O. (2009) Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe. Environmental Microbiology 11, 1612-1623. https://doi.org/10.1111/j.1462-2920.2009.01926.x
  15. Ishikawa, A., Furuya, K. (2004) The role of diatom resting stages in the onset of the spring bloom in the East China Sea. Marine Biology 145, 633-639.
  16. Iwasaka, Y., Shi, G.Y., Yamada, M., Kobayashi, F., Kakikawa, M., Maki, T., Chen, B., Tobo, Y., Hong, C. (2009). Mixture of Kosa (Asian dust) and bioaerosols detected in the atmosphere over the Kosa particles source regions with balloon-borne measurements: possibility of long-range transport. Air Quality, Atmosphere & Health 2, 29-38. https://doi.org/10.1007/s11869-009-0031-5
  17. Keller, K.D., Shapiro, L.P., Haugen, E.M., Cucci, T.L., Sherr, E.B. (1994) Phagotrophy of fluorescently labeled bacteria by an oceanic phytoplankton. Microbiological Ecology 28, 39-52.
  18. Kellogg, C.A., Griffin, D.W. (2006) Aerobiology and the global transport of desert dust. Trends Ecological Evolution 21, 638-644. https://doi.org/10.1016/j.tree.2006.07.004
  19. Kellogg, C.A., Griffin, D.W., Garrison, V.H., Peak, K.K., Royal, N., Smith, R.R., Shinn, E.A. (2004) Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia 20, 99-110. https://doi.org/10.1023/B:AERO.0000032947.88335.bb
  20. Lekunberri, I., Lefort, T., Romero, E., Vázquez-Domínguez, E., Romera-Castillo, C., Marrasé, C., Peters, F., Weinbauer, M., Gasol, J.M. (2010) Effects of a dust deposition event on coastal marine microbial abundance and activity, bacterial community structure and ecosystem function. Journal of Plankton Research 32, 381-396. https://doi.org/10.1093/plankt/fbp137
  21. Maki, T., Aoki, S., Susuki, S., Kobayashi, F., Kakikawa, M., Hasegawa, H., Iwasaka, Y. (2011) Characterization of halotolerant and oligotrophic bacterial communities in Asian desert dust (KOSA) bioaerosol accumulated in layers of snow on Mount Tateyama, Central Japan. Aerobiologia, in press. DOI 10.1007/s10453-011-9196-0.
  22. Maki, T., Susuki, S., Kobayashi, F., Kakikawa, M., Tobo, Y., Yamada, M., Higashi, T., Matsuki, A., Hong, C., Hasegawa, H., Iwasaka, Y. (2010) Phylogenetic analysis of atmospheric halotolerant bacterial communities at high altitude in an Asian dust (KOSA) arrival region, Suzu City. Science of Total Environment 408, 4556-4562. https://doi.org/10.1016/j.scitotenv.2010.04.002
  23. Moore, J.K., Doney, S.C., Lindsay, K., Mahowald, N., Michaels, A.F. (2006) Nitrogen fixation amplifies the ocean biogeochemical response to decadal timescale variations in mineral dust deposition. Tellus 58B, 560-572.
  24. Osada, K., Iida, H., Kido, M., Matsunaga, K., Iwasaka, Y. (2004) Mineral dust layers in snow at Mount Tateyama, Central Japan: formation processes and characteristics. Tellus 56B, 382-392.
  25. Parsons, T.R., Maita, Y., Lalli, C.M. (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, Oxford.
  26. Paytan, A., Mackey, K.R.M., Chen, Y., Lima, I.D., Doney, S.C., Mahowald, N., Labiosa, R., Post, A.F. (2009) Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences 106, 4601-4605. https://doi.org/10.1073/pnas.0811486106
  27. Prospero, J.M., Savoie, D.L. (1989) Effect of continental sources on nitrate concentrations over the Pacific Ocean. Nature 339, 687-689 https://doi.org/10.1038/339687a0
  28. Pulido-Villena, E., Wagener, T., Guieu, C. (2008) Bacterial response to dust pulses in the western Mediterranean: implications for carbon cycling in the oligotrophic ocean. Global Biogeochemistry Cycles 22, doi:10.1029/2007GB003091.
  29. Russell, W.C., Newman, C., Williamson, D.H. (1974). A simple cytochemical technique for demonstration of DNA in cells infected with mycoplasms and viruses. Nature 253, 461-462.
  30. Spokes, L.J., Jickells, T.D. (1996) Factors controlling the solubility of aerosol trace metals in the atmosphere and on mixing into seawater. Aquatic Geochemistry 1, 355-374. https://doi.org/10.1007/BF00702739

Cited by

  1. Evaluation of the toxicity of a Kosa (Asian duststorm) event from view of food poisoning: observation of Kosa cloud behavior and real-time PCR analyses of Kosa bioaerosols during May 2011 in Kanazawa, Japan vol.9, pp.1, 2016, https://doi.org/10.1007/s11869-015-0333-8
  2. Spatial and seasonal distributions of photosynthetic picoeukaryotes along an estuary to basin transect in the northern South China Sea vol.39, pp.3, 2017, https://doi.org/10.1093/plankt/fbx017
  3. Heterotrophic prokaryote distribution along a 2300 km transect in the North Pacific subtropical gyre during a strong La Niña conditions: relationship between distribution and hydrological conditions vol.12, pp.11, 2015, https://doi.org/10.5194/bg-12-3607-2015
  4. Aerosol trace metal leaching and impacts on marine microorganisms vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-04970-7
  5. Concentration and Viability of Bacterial Aerosols Associated with Weather in Asian Continental Outflow: Current Understanding vol.1, pp.2, 2017, https://doi.org/10.1007/s41810-017-0008-y