• Title/Summary/Keyword: Aerodynamic Optimization

Search Result 224, Processing Time 0.029 seconds

Exploratory study on wind-adaptable design for super-tall buildings

  • Xie, Jiming;Yang, Xiao-yue
    • Wind and Structures
    • /
    • v.29 no.6
    • /
    • pp.489-497
    • /
    • 2019
  • Wind-adaptable design (WAD) provides a new method for super-tall buildings to lessen design conflicts between architectural prerequisites and aerodynamic requirements, and to increase the efficiency of structural system. Compared to conventional wind-resistant design approach, the proposed new method is to design a building in two consecutive stages: a stage in normal winds and a stage during extreme winds. In majority of time, the required structural capacity is primarily for normal wind effects. During extreme wind storms, the building's capacity to wind loads is reinforced by on-demand operable flow control measures/devices to effectively reduce the loads. A general procedure for using WAD is provided, followed by an exploratory case study to demonstrate the application of WAD.

Single and High-Lift Airfoil Design Optimization Using Aerodynamic Sensitivity Analysis

  • Kim, Chang Sung;Lee, Byoungjoon;Kim, Chongam;Rho, Oh-Hyun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.1
    • /
    • pp.20-27
    • /
    • 2001
  • Aerodynamic sensitivity analysis is performed for the Navier-Stokes equations coupled with two-equation turbulence models using a discrete adjoint method and a direct differentiation method respectively. Like the mean flow equations, the turbulence model equations are also hand-differentiated to accurately calculate the sensitivity derivatives of flow quantities with respect to design variables in turbulent viscous flows. The sensitivity codes are then compared with the flow solver in terms of solution accuracy, computing time and computer memory requirements. The sensitivity derivatives obtained from the sensitivity codes with different turbulence models are compared with each other. The capability of the present sensitivity codes to treat complex geometry is successfully demonstrated by analyzing the flows over multi-element airfoils on Chimera overlaid grid systems.

  • PDF

터보펌프 부분흡입형 터빈 공력설계

  • Lee, Eun-Seok;Kim, Jin-Han
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • In this study, one dimensional aerodynamic and structural study of a partial admission turbo pump turbine was performed. A turbine consists of a nozzle, rotor, outlet guide vanes. The aerodynamic characteristics of each component was derived from the governing equation and validated from the CFD calculations. One-dimensional basic design such as velocity triangles was conducted from the mean line analysis and modified from the 2-D and 3-D CFD analysis. The blade profile was determined by the CFD optimization. The thermal stress analysis and structural analysis are needed to be studied in the next design stage.

  • PDF

Ni-Ti actuators and genetically optimized compliant ribs for an adaptive wing

  • Mirone, Giuseppe
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.645-662
    • /
    • 2009
  • Adaptive wings are capable of properly modifying their shape depending on the current aerodynamic conditions, in order to improve the overall performance of a flying vehicle. In this paper is presented the concept design of a small-scale compliant wing rib whose outline may be distorted in order to switch from an aerodynamic profile to another. The distortion loads are induced by shape memory alloy actuators placed within the frame of a wing section whose elastic response is predicted by the matrix method with beam formulation. Genetic optimization is used to find a wing rib structure (corresponding to the first airfoil) able to properly deforms itself when loaded by the SMA-induced forces, becoming as close as possible to the desired target shape (second airfoil). An experimental validation of the design procedure is also carried out with reference to a simplified structure layout.

Aerodynamic numerical analysis with linear matrix inequality theorem of intelligent control

  • C.C. Hung;T. Nguyen
    • Advances in aircraft and spacecraft science
    • /
    • v.10 no.2
    • /
    • pp.159-177
    • /
    • 2023
  • In this paper we proposed the aerodynamic numerical analysis with linear matrix inequality theorem of intelligent control, which is believed to be applicable in the application not only a function of the block size and reduced wind speed but itself depends on both the size and the aspect ratio of the structure, not on the total scruton number. In order to improve the accuracy of the results, the optimization curve was optimized for the test to evaluate the response in the time of achieving the results and we focus on the results that found a significant influence from the assumptions used for damage propagation for aircraft structural analysis of composite materials. Finally, the numerical simulations confirmed the effectiveness of the method.

Structural Optimization of a Joined-Wing Using Equivalent Static Loads (등가정하중을 이용한 접합날개의 구조최적설계)

  • Lee Hyun-Ah;Kim Yong-Il;Park Gyung-Jin;Kang Byung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.5 s.248
    • /
    • pp.585-594
    • /
    • 2006
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing are joined together in a joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performance and reduction of the structural weight. In this research, dynamic response optimization of a joined-wing is carried out by using equivalent static loads. Equivalent static loads are made to generate the same displacement field as the one from dynamic loads at each time step of dynamic analysis. The gust loads are considered as critical loading conditions and they dynamically act on the structure of the aircraft. It is difficult to identify the exact gust load profile. Therefore, the dynamic loads are assumed to be (1-cosine) function. Static response optimization is performed for the two cases. One uses the same design variable definition as dynamic response optimization. The other uses the thicknesses of all elements as design variables. The results are compared.

Multi-Objective Optimization of Flexible Wing using Multidisciplinary Design Optimization System of Aero-Non Linear Structure Interaction based on Support Vector Regression (Support Vector Regression 기반 공력-비선형 구조해석 연계시스템을 이용한 유연날개 다목적 최적화)

  • Choi, Won;Park, Chan-Woo;Jung, Sung-Ki;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.601-608
    • /
    • 2015
  • The static aeroelastic analysis and optimization of flexible wings are conducted for steady state conditions while both aerodynamic and structural parameters can be used as optimization variables. The system of multidisciplinary design optimization as a robust methodology to couple commercial codes for a static aeroelastic optimization purpose to yield a convenient adaptation to engineering applications is developed. Aspect ratio, taper ratio, sweepback angle are chosen as optimization variables and the skin thickness of the wing. The real-coded adaptive range multi-objective genetic algorithm code, which represents the global multi-objective optimization algorithm, was used to control the optimization process. The support vector regression(SVR) is applied for optimization, in order to reduce the time of computation. For this multi-objective design optimization problem, numerical results show that several useful Pareto optimal designs exist for the flexible wing.

Design Optimization of Multi-element Airfoil Shapes to Minimize Ice Accretion (결빙 증식 최소화를 위한 다중 익형 형상 최적설계)

  • Kang, Min-Je;Lee, Hyeokjin;Jo, Hyeonseung;Myong, Rho-Shin;Lee, Hakjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.445-454
    • /
    • 2022
  • Ice accretion on the aircraft components, such as wings, fuselage, and empennage, can occur when the aircraft encounters a cloud zone with high humidity and low temperature. The prevention of ice accretion is important because it causes a decrease in the aerodynamic performance and flight stability, thus leading to fatal safety problems. In this study, a shape design optimization of a multi-element airfoil is performed to minimize the amount of ice accretion on the high-lift device including leading-edge slat, main element, and trailing-edge flap. The design optimization framework proposed in this paper consists of four major parts: air flow, droplet impingement and ice accretion simulations and gradient-free optimization algorithm. Reynolds-averaged Navier-Stokes (RANS) simulation is used to predict the aerodynamic performance and flow field around the multi-element airfoil at the angle of attack 8°. Droplet impingement and ice accretion simulations are conducted using the multi-physics computational analysis tool. The objective function is to minimize the total mass of ice accretion and the design variables are the deflection angle, gap, and overhang of the flap and slat. Kriging surrogate model is used to construct the response surface, providing rapid approximations of time-consuming function evaluation, and genetic algorithm is employed to find the optimal solution. As a result of optimization, the total mass of ice accretion on the optimized multielement airfoil is reduced by about 8% compared to the baseline configuration.

10kW wind turbine blade aerodynamic design and verification (10kW 풍력발전기 블레이드 형상 개념 설계 및 타당성 검증)

  • Yoo, Cheol;Son, Eunkuk;Hwang, Sungmok;Kim, Daejin;Kim, Seokwoo
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.6
    • /
    • pp.42-49
    • /
    • 2017
  • A 10kw wind turbine blade aerodynamic design was carried out using the self-developed program AeroDA. The concept, basic shape, and optimization were designed and verified. A performance analysis was carried out and the key factors in each design stage are summarized. In addition, a guide for the placement of cross-section airfoils constituting the blades is presented, and the importance of the stall margin test as a method of verifying aerodynamic design is summarized. In order to verify the design program AeroDA, we compared the results of the performance analysis with a specialized program DNVGL_Bladed.

Approximation of Distributed Aerodynamic Force to a Few Concentrated Forces for Studying Supersonic Panel Flutter (초고속 패널 플러터 연구를 위한 분포 공기력의 집중하중 근사화)

  • Dhital, Kailash;Han, Jae-Hung;Lee, Yoon-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.518-527
    • /
    • 2016
  • The present study considers the usage of concentrated forces to simulate real panel flutter. The concept of using concentrated forces have been validated for studying the flutter of wing structure in subsonic flow, yet its application in the supersonic region remained to be explored. Hence, a simply supported panel subjected to forces, equivalent to aerodynamic force is considered for studying supersonic panel flutter. The distributed aerodynamic forces are approximated to few concentrated forces by taking numerical integration. The aeroelastic equation is formulated using the classical small-deflection theory and the piston theory for linear panel flutter whereas for emulated panel flutter the flutter equation is derived by replacing the pressure due to aerodynamic loading with pressure from concentrated loading. Finally, flutter frequency, flutter dynamic pressure, and corresponding mode shape are found for emulated panel flutter and compared with linear panel flutter. Two important parameters, the number of concentrated forces and their location are discussed through numerical examples and optimization process respectively. So far, the flutter results acquired in this study are reasonable to suggest the feasibility of reproducing panel flutter using concentrated forces.