Acknowledgement
본 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(NRF-2017R1A5A1015311).
References
- Bragg, M. B., Broeren, A. P. and Blumenthal, L. A., "Iced-airfoil aerodynamics," Progress in Aerospace Sciences, Vol. 41, No. 5, 2005, pp. 323~362. https://doi.org/10.1016/j.paerosci.2005.07.001
- Lynch, F. T. and Khodadoust, A., "Effects of ice accretions on aircraft aerodynamics," Progress in Aerospace Sciences, Vol. 37, No. 8, 2001, pp. 669~767. https://doi.org/10.1016/S0376-0421(01)00018-5
- Raj, L. P., Yee, K. and Myong, R. S., "Sensitivity of ice accretion and aerodynamic performance degradation to critical physical and modeling parameters affecting airfoil icing," Aerospace Science and Technology, Vol. 98, 2020.
- De Souza, J. R. B., Lisboa, K. M., Allahyarzadeh, A. B., de Andrade, G. J. A., Loureiro, J. B. R., Naveira-Cotta, C. P., Silva Freire, A. P., Orlande, H. R. B., Silva, G. A. L. and Cotta, R. M., "Thermal analysis of anti-icing systems in aeronautical velocity sensors and structures," Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 38, No. 5, 2016, pp. 1489~1509. https://doi.org/10.1007/s40430-015-0449-7
- Meier, O. and Scholz, D., A Handbook Method for the Estimation of Power Requirements for Electrical De-Icing Systems, Hamburg University of Applied Sciences, 2010.
- Ahn, G. B., Jung, K. Y., Myong, R. S., Shin, H. B. and Habashi, W. G., "Numerical and experimental investigation of ice accretion on rotorcraft engine air intake," Journal of Aircraft, Vol. 52, No. 3, 2015, pp. 903~909. https://doi.org/10.2514/1.C032839
- Van Dam, C. P., "The aerodynamic design of multi-element high-lift systems for transport airplanes," Progress in Aerospace Sciences, Vol. 38, No. 2, 2002, pp. 101~144. https://doi.org/10.1016/S0376-0421(02)00002-7
- Cao, Y., Tan, W. and Wu, Z., "Aircraft icing: An ongoing threat to aviation safety," Aerospace Science and Technology, Vol. 75, 2018, pp. 353~385. https://doi.org/10.1016/j.ast.2017.12.028
- Board, N. T. S., "Aircraft accient report, comair flight 3272, Embraer EMB-120RT, N265CA," National Transportation Safety Board Report, 1997.
- Park, M. S., Aircraft De-Icing System Using Thermal Conductive Fibers, Ph.D. Dissertation, Embry-Riddle Aeronautical University, 2015.
- Raj, L. P., Lee, J. W. and Myong, R. S., "Ice accretion and aerodynamic effects on a multielement airfoil under SLD icing conditions," Aerospace Science and Technology, Vol. 85, 2019, pp. 320~333. https://doi.org/10.1016/j.ast.2018.12.017
- Petrosino, F., Mingione, G., Carozza, A., Gilardoni, T. and D'Agostini, G., "Ice accretion model on multi-element airfoil," Journal of Aircraft, Vol. 48, No. 6, 2011, pp. 1913~1920. https://doi.org/10.2514/1.C031346
- Shin, J., Wilcox, P., Chin, V. and Sheldon, D., "Icing test results on an advanced two-dimensional high-lift multi-element airfoil," Applied Aerodynamics Conference, 1994.
- Potapczuk, M. G. and Berkowitz, B. M., "Experimental investigation of multielement airfoil ice accretion andresulting performance degradation," Journal of Aircraft, Vol. 27, No. 8, pp. 679~691. https://doi.org/10.2514/3.25341
- Jo, J. H., Raj, L. P., Lee, Y. M., Lee, J. H. and Myong, R. S., "Computational simulation of flows over a ridge iced airfoil using RANS and LES," Journal of Computational Fluids Engineering, Vol. 24, No. 3, 2019, pp. 8~18. https://doi.org/10.6112/kscfe.2019.24.3.008
- Lee, C. H., Sin, S. M., Jung, S. K., Myong, R. S., Cho, T. H., Jung, J. H. and Jeong, H. H., "Icing effects on aerodynamic characteristics of the main wing section of KC-100 aircraft," Proceeding of The Korean Society of Computational Fluids Engineering Spring Conference 2010, 2010, pp. 464~467.
- Besnard, E., Schmitz, A., Boscher, E., Garcia, N. and Cebeci, T., "Two-dimensional aircraft high lift system design and optimization," AIAA Paper 98-0123.
- Kanazaki, M., Tanaka, K., Jeong, S. and Yamamoto, K., "Multi-objective aerodynamic optimization of elements' setting for high-lift airfoil using kriging model," AIAA Paper 2006-1471.
- Kim, S., Alonso, J. and Jameson, A., "Design optimization of high-lift configurations using a viscous continuous adjoint method," AIAA Paper 2002-0844.
- Eyi, S. I. N. A. N., Lee, K. D., Rogers, S. E. and Kwak, D., "High-lift design optimization using Navier-Stokes equations," Journal of Aircraft, Vol. 33, No. 3, 1996, pp. 499~504. https://doi.org/10.2514/3.46972
- Kim, H. J., Kim, C. S. and Rho, O. H., "A parametric study and optimization study on multielement airfoil," Journal of Korean Society for Aeronautical and Space Sciences, Vol. 26, No. 7, 1998, pp. 18~27.
- Park, Y. M., Kang, H. M., Chung, J. D. and Lee, H. C., "Optimization of flap shape and position for two-dimensional high lift device," Journal of Aerospace System Engineering, Vol. 7, No. 3, 2013, pp. 1~6. https://doi.org/10.20910/JASE.2013.7.3.001
- Menter, F. R., "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598~1605. https://doi.org/10.2514/3.12149
- Bourgault, Y., Habashi, W. G., Dompierre, J. and Baruzzi, G. S., "A finite element method study of Eulerian droplets impingement models," International Journal for Numerical Methods in Fluids, Vol. 29, No. 4, pp. 429~449. https://doi.org/10.1002/(SICI)1097-0363(19990228)29:4<429::AID-FLD795>3.0.CO;2-F
- Jin, J. Y. and Virk, M. S., "Study of ice accretion and icing effects on aerodynamic characteristics of DU96 wind turbine blade profile," Cold Regions Science and Technology, Vol. 160, pp. 119~127.
- Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P., "Design and analysis of computer experiments," Statistical Science, Vol. 4, No. 4, pp. 409~423. https://doi.org/10.1214/ss/1177012413