DOI QR코드

DOI QR Code

Design Optimization of Multi-element Airfoil Shapes to Minimize Ice Accretion

결빙 증식 최소화를 위한 다중 익형 형상 최적설계

  • Kang, Min-Je (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Lee, Hyeokjin (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Jo, Hyeonseung (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Myong, Rho-Shin (School of Mechanical and Aerospace Engineering, Gyeongsang National University) ;
  • Lee, Hakjin (School of Mechanical and Aerospace Engineering, Gyeongsang National University)
  • Received : 2022.02.17
  • Accepted : 2022.05.12
  • Published : 2022.07.01

Abstract

Ice accretion on the aircraft components, such as wings, fuselage, and empennage, can occur when the aircraft encounters a cloud zone with high humidity and low temperature. The prevention of ice accretion is important because it causes a decrease in the aerodynamic performance and flight stability, thus leading to fatal safety problems. In this study, a shape design optimization of a multi-element airfoil is performed to minimize the amount of ice accretion on the high-lift device including leading-edge slat, main element, and trailing-edge flap. The design optimization framework proposed in this paper consists of four major parts: air flow, droplet impingement and ice accretion simulations and gradient-free optimization algorithm. Reynolds-averaged Navier-Stokes (RANS) simulation is used to predict the aerodynamic performance and flow field around the multi-element airfoil at the angle of attack 8°. Droplet impingement and ice accretion simulations are conducted using the multi-physics computational analysis tool. The objective function is to minimize the total mass of ice accretion and the design variables are the deflection angle, gap, and overhang of the flap and slat. Kriging surrogate model is used to construct the response surface, providing rapid approximations of time-consuming function evaluation, and genetic algorithm is employed to find the optimal solution. As a result of optimization, the total mass of ice accretion on the optimized multielement airfoil is reduced by about 8% compared to the baseline configuration.

항공기가 빙점 이하의 습도가 높은 구름대를 지날 때 액적이 항공기와 충돌하면 날개, 동체 등 항공기 구성품에 결빙이 발생한다. 특히 항공기의 날개에 결빙이 증식되면 공력 성능의 저하와 비행 안정성의 감소 등의 치명적인 안전 문제를 초래할 수 있다. 본 연구에서는 항공기 날개에 적용되는 고양력 장치인 다중 익형의 결빙 증식량이 최소가 되도록 형상 최적설계를 수행하였다. 3차원 Reynolds-Averaged Navier-Stokes 지배 방정식을 이용하여 공력해석을 수행하였고, 다물리 전산해석을 통해 결빙의 형상 및 증식량을 예측하였다. 최적설계의 목적함수는 결빙 증식량 최소화로 설정하였고, 설계변수는 Slat과 Flap의 전개 각도와 위치를 정의하는 형상 변수 6개를 선정하였다. 설계 과정에서 목적함수의 평가는 크리깅 근사모델을 사용하여 대체하였고 유전자 알고리즘을 적용하여 최적 형상을 도출하였다. 최적화를 수행한 결과, Slat과 Flap에 최적의 전개 각도와 위치를 적용하였을 때 결빙 증식량이 약 8% 감소하였다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(NRF-2017R1A5A1015311).

References

  1. Bragg, M. B., Broeren, A. P. and Blumenthal, L. A., "Iced-airfoil aerodynamics," Progress in Aerospace Sciences, Vol. 41, No. 5, 2005, pp. 323~362. https://doi.org/10.1016/j.paerosci.2005.07.001
  2. Lynch, F. T. and Khodadoust, A., "Effects of ice accretions on aircraft aerodynamics," Progress in Aerospace Sciences, Vol. 37, No. 8, 2001, pp. 669~767. https://doi.org/10.1016/S0376-0421(01)00018-5
  3. Raj, L. P., Yee, K. and Myong, R. S., "Sensitivity of ice accretion and aerodynamic performance degradation to critical physical and modeling parameters affecting airfoil icing," Aerospace Science and Technology, Vol. 98, 2020.
  4. De Souza, J. R. B., Lisboa, K. M., Allahyarzadeh, A. B., de Andrade, G. J. A., Loureiro, J. B. R., Naveira-Cotta, C. P., Silva Freire, A. P., Orlande, H. R. B., Silva, G. A. L. and Cotta, R. M., "Thermal analysis of anti-icing systems in aeronautical velocity sensors and structures," Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 38, No. 5, 2016, pp. 1489~1509. https://doi.org/10.1007/s40430-015-0449-7
  5. Meier, O. and Scholz, D., A Handbook Method for the Estimation of Power Requirements for Electrical De-Icing Systems, Hamburg University of Applied Sciences, 2010.
  6. Ahn, G. B., Jung, K. Y., Myong, R. S., Shin, H. B. and Habashi, W. G., "Numerical and experimental investigation of ice accretion on rotorcraft engine air intake," Journal of Aircraft, Vol. 52, No. 3, 2015, pp. 903~909. https://doi.org/10.2514/1.C032839
  7. Van Dam, C. P., "The aerodynamic design of multi-element high-lift systems for transport airplanes," Progress in Aerospace Sciences, Vol. 38, No. 2, 2002, pp. 101~144. https://doi.org/10.1016/S0376-0421(02)00002-7
  8. Cao, Y., Tan, W. and Wu, Z., "Aircraft icing: An ongoing threat to aviation safety," Aerospace Science and Technology, Vol. 75, 2018, pp. 353~385. https://doi.org/10.1016/j.ast.2017.12.028
  9. Board, N. T. S., "Aircraft accient report, comair flight 3272, Embraer EMB-120RT, N265CA," National Transportation Safety Board Report, 1997.
  10. Park, M. S., Aircraft De-Icing System Using Thermal Conductive Fibers, Ph.D. Dissertation, Embry-Riddle Aeronautical University, 2015.
  11. Raj, L. P., Lee, J. W. and Myong, R. S., "Ice accretion and aerodynamic effects on a multielement airfoil under SLD icing conditions," Aerospace Science and Technology, Vol. 85, 2019, pp. 320~333. https://doi.org/10.1016/j.ast.2018.12.017
  12. Petrosino, F., Mingione, G., Carozza, A., Gilardoni, T. and D'Agostini, G., "Ice accretion model on multi-element airfoil," Journal of Aircraft, Vol. 48, No. 6, 2011, pp. 1913~1920. https://doi.org/10.2514/1.C031346
  13. Shin, J., Wilcox, P., Chin, V. and Sheldon, D., "Icing test results on an advanced two-dimensional high-lift multi-element airfoil," Applied Aerodynamics Conference, 1994.
  14. Potapczuk, M. G. and Berkowitz, B. M., "Experimental investigation of multielement airfoil ice accretion andresulting performance degradation," Journal of Aircraft, Vol. 27, No. 8, pp. 679~691. https://doi.org/10.2514/3.25341
  15. Jo, J. H., Raj, L. P., Lee, Y. M., Lee, J. H. and Myong, R. S., "Computational simulation of flows over a ridge iced airfoil using RANS and LES," Journal of Computational Fluids Engineering, Vol. 24, No. 3, 2019, pp. 8~18. https://doi.org/10.6112/kscfe.2019.24.3.008
  16. Lee, C. H., Sin, S. M., Jung, S. K., Myong, R. S., Cho, T. H., Jung, J. H. and Jeong, H. H., "Icing effects on aerodynamic characteristics of the main wing section of KC-100 aircraft," Proceeding of The Korean Society of Computational Fluids Engineering Spring Conference 2010, 2010, pp. 464~467.
  17. Besnard, E., Schmitz, A., Boscher, E., Garcia, N. and Cebeci, T., "Two-dimensional aircraft high lift system design and optimization," AIAA Paper 98-0123.
  18. Kanazaki, M., Tanaka, K., Jeong, S. and Yamamoto, K., "Multi-objective aerodynamic optimization of elements' setting for high-lift airfoil using kriging model," AIAA Paper 2006-1471.
  19. Kim, S., Alonso, J. and Jameson, A., "Design optimization of high-lift configurations using a viscous continuous adjoint method," AIAA Paper 2002-0844.
  20. Eyi, S. I. N. A. N., Lee, K. D., Rogers, S. E. and Kwak, D., "High-lift design optimization using Navier-Stokes equations," Journal of Aircraft, Vol. 33, No. 3, 1996, pp. 499~504. https://doi.org/10.2514/3.46972
  21. Kim, H. J., Kim, C. S. and Rho, O. H., "A parametric study and optimization study on multielement airfoil," Journal of Korean Society for Aeronautical and Space Sciences, Vol. 26, No. 7, 1998, pp. 18~27.
  22. Park, Y. M., Kang, H. M., Chung, J. D. and Lee, H. C., "Optimization of flap shape and position for two-dimensional high lift device," Journal of Aerospace System Engineering, Vol. 7, No. 3, 2013, pp. 1~6. https://doi.org/10.20910/JASE.2013.7.3.001
  23. Menter, F. R., "Two-equation eddy-viscosity turbulence models for engineering applications," AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598~1605. https://doi.org/10.2514/3.12149
  24. Bourgault, Y., Habashi, W. G., Dompierre, J. and Baruzzi, G. S., "A finite element method study of Eulerian droplets impingement models," International Journal for Numerical Methods in Fluids, Vol. 29, No. 4, pp. 429~449. https://doi.org/10.1002/(SICI)1097-0363(19990228)29:4<429::AID-FLD795>3.0.CO;2-F
  25. Jin, J. Y. and Virk, M. S., "Study of ice accretion and icing effects on aerodynamic characteristics of DU96 wind turbine blade profile," Cold Regions Science and Technology, Vol. 160, pp. 119~127.
  26. Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P., "Design and analysis of computer experiments," Statistical Science, Vol. 4, No. 4, pp. 409~423. https://doi.org/10.1214/ss/1177012413