
Trans. Korean Soc. Noise Vib. Eng., 26(5) : 518~527, 2016 한국소음진동공학회논문집 제26 권 제5 호, pp. 518~527, 2016
http://dx.doi.org/10.5050/KSNVE.2016.26.5.518 ISSN 1598-2785(Print),  ISSN 2287-5476(Online)

518
┃

Trans. Korean Soc. Noise Vib. Eng., 26(5) : 518~527, 2016

Approximation of Distributed Aerodynamic Force 
to a Few Concentrated Forces 

for Studying Supersonic Panel Flutter
초고속 패널 플러터 연구를 위한 분포 공기력의 집중하중 근사화

Kailash Dhital*, Jae-Hung Han† and Yoon-Kyu Lee**

디탈 카일라스 · 한 재 흥 · 이 윤 규

(Received March 16, 2016 ; Revised July 21, 2016 ; Accepted July 21, 2016)

Key Words : Linear Panel Flutter(선형 패널 플러터), Classical Small-deflection Theory(고전 미소 변위 이론), Piston 

Theory(피스톤 이론), Optimization(최적화)

ABSTRACT

The present study considers the usage of concentrated forces to simulate real panel flutter. The 

concept of using concentrated forces have been validated for studying the flutter of wing structure in 

subsonic flow, yet its application in the supersonic region remained to be explored. Hence, a simply 

supported panel subjected to forces, equivalent to aerodynamic force is considered for studying super-

sonic panel flutter. The distributed aerodynamic forces are approximated to few concentrated forces 

by taking numerical integration. The aeroelastic equation is formulated using the classical small-de-

flection theory and the piston theory for linear panel flutter whereas for emulated panel flutter the 

flutter equation is derived by replacing the pressure due to aerodynamic loading with pressure from 

concentrated loading. Finally, flutter frequency, flutter dynamic pressure, and corresponding mode 

shape are found for emulated panel flutter and compared with linear panel flutter. Two important pa-

rameters, the number of concentrated forces and their location are discussed through numerical exam-

ples and optimization process respectively. So far, the flutter results acquired in this study are rea-

sonable to suggest the feasibility of reproducing panel flutter using concentrated forces.

요   약

이 연구는 패널 플러터 시뮬레이션을 위한 집중 하중의 사용을 연구한다. 이러한 구상은 날개 구

조의 아음속 플러터 연구에 대해서는 검증된 바 있으나 초음속 영역에서는 그렇지 못하다. 따라서, 

4면 단순 지지 경계 조건의 패널에 공기력과 등가의 집중하중을 가하여 초음속 패널 플러터를 연구

한다. 분포된 공기력은 수치 적분 계산을 통해 집중 하중들로 근사된다. 선형 패널 플러터에 대한 

공탄성 방정식은 고전적인 small-deflection theory와 piston theory를 이용하여 세워지는 반면, 모방된 

패널 플러터에서 플러터 방정식은 분포 공기력에 의한 압력을 집중 하중에 의한 압력으로 대체함
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으로써 유도된다. 최종적으로 플러터 주파수, 임계 동압, 그리고 그에 상응하는 모드형상이 모방된 패

널 플러터에 대해 구해지고, 그 결과를 선형 패널 플러터로부터 얻은 결과와 비교하여 검증하였다. 또한 

두 가지 중요한 파라미터인 집중 하중의 개수와 위치는 수치적 예제들과 최적화 과정을 통해 각각 논의

되었다. 이 연구에서 얻어진 플러터 결과는 집중하중들을 이용하여 패널 플러터를 재현하는 가능성을 논

의하는데 타당한 것으로 생각된다.

Nomenclature

a, b : Panel length and width 

h : Panel thickness

E : Panel young's modulus

 : Poisson's ratio

D : Flexural rigidity, Eh3/12(1- 
 : Panel density

w(x,y,t) : Panel transverse deflection

m , n, u, v : Mode indicators

Wmn, Wuv : Normal modes

∆P : Aerodynamic pressure

∆Pc  : Pressure due to concentrated loading 

Quv : Generalized aerodynamic force

p : Complex eigenvalue, pR+ipI 

k : Number of concentrated forces

(xk,yk) : Location coordinate of concentrated 

forces

Smnuv : Aerodynamic stiffness coefficient 

due to concentrated forces

Dmnuv : Aerodynamic damping coefficient 

due to concentrated forces

f : Objective function

1. Introduction

The panel under air loads can cause self-excited 

vibration due to the mutual interaction among 

elastic, inertial, and aerodynamic forces. For in-

creasing dynamic pressure, at flutter onset, a cata-

strophic panel failure may occur. Therefore, to 

avoid such an undesirable phenomenon, flutter 

analyses in supersonic flow have been performed 

using analytical, finite element, and experimental 

methods to set the flutter boundaries. A compre-

hensive review of linear and nonlinear panel flut-

ter have been published by Dowell(1) and Mei et 

al.(2). All the literature on panel flutter has consid-

ered distributed aerodynamic loading. Concerning 

experimental studies, so far, flutter wind tunnel 

testing has been carried out to investigate the aer-

oelastic instabilities of an aircraft. However, in 

general, the testing is expensive and complex, and 

unaffordable for general research propose. 

Similarly, the structure discrepancy from the 

scaled down model could result in flutter bounda-

ries error. 

An alternate way of treating flutter without the 

need for wind tunnel, known as "Dry Wind 

Tunnel"(DWT)(3) based on ground vibration test 

(GVT) has been proposed. The DWT system uti-

lizes GVT hardware for analyzing flutter bounda-

ries of a full-scale structure subjected to con-

centrated forces. The DWT system has been dem-

onstrated on a rectangular plate, clamped at one 

edge for a subsonic Mach number and a very 

good agreement with their finite element method 

counterparts. However, the flutter characteristics in 

supersonic Mach number such as panel flutter us-

ing DWT concept has not been investigated. And, 

it is to understand that the experimental procedure 

is far more complicated for supersonic flow than 

subsonic flow.

In the present paper, the flutter boundaries of a 

simply supported panel in supersonic Mach num-

ber have been analyzed using distributed aerody-

namic forces and a few concentrated forces 

respectively. The key challenge of reducing dis-

tributed aerodynamic loads to a few concentrated 

forces is carried out through the numerical in-

tegration of pressure distribution based on the pis-
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ton theory and finding the best-concentrated forces 

location through an optimization approach.

2. Linear Panel Flutter

2.1 Mathematical Formulation

A flat panel with one side exposed to super-

sonic airflow is idealized to be uniform, thin, and 

isotropic as shown in Fig. 1. The structural for-

mulation of the panel is carried out using the 

classical small-deflection theory and the aerody-

namic formulation is based on the piston theory. 

Thus, the governing equation of panel motion is 

written as(4)

   4

,
, , 0

tt
Pw x y t hwD      (1)

where, ∆P is an aerodynamic pressure due to 

panel motion and free stream velocity and in a 

direction opposite to transverse deflection, ex-

pressed as(2)

  2
2

22

1 ( 2)

( 1)1

w M w
P U

x M U tM
 



  
  

  

  
  

  
(2)

The solution to linear panel flutter problem is 

based on modal expansion. The panel deflection 

(w) is expanded in terms of its structural normal 

modes, W mn, for example, Wmn is an ei-

genfunction and mn is a natural frequency from 

free vibration analysis of Eq. (1) that satisfy same 

boundary conditions as w . The modal expansion 

of plate is written as

Fig. 1 A flat panel

 

1 1

( , , ) ( , ) ( )mn mn
m n

w x y t W x y q t
 

 
  (3)

Then, substituting Eq. (3) and Eq. (2) into Eq. 

(1), the system of continuous equations to the dis-

crete equations for qmn is obtained by introducing 

orthogonality condition and Galerkin's procedure 

of multiplying resultant equation by Wuv and in-

tegrating over the plate surface.

  2 2 0
uv uv uv u v u v u v

M q M q U Q      (4)

Where, 

 

0 0

,
4

0 ,

b a

mn uv uv

hab
hW W dxdy M if m u n v

if m u n v


    

  

 

and, 

 
2uv uv

P
Q W dA

U 


   (5)

where, Quv is a generalized force. The Eq. (4) is 

mass normalized and expressed in matrix notation.

             0sM q g D q K S q     (6)

where, [ ]M  is a modal mass matrix,  [ ]D  is a 

modal aerodynamic damping matrix,  [ ]
s

K  is a 

modal stiffness matrix,  [ ]S is a modal aerody-

namic stiffness matrix, 
22 / 1q M   , and 

2 2( 2) / ( 1)g M U M    . Apparently, Eq. (6) is a 

second-order linear equation which does not allow 

direct eigenvalue analysis, so the transformation of 

variables defined by 1
q q  and   2

q q   are used 

to simplify Eq. (6) in a standard first-order form.

     
   

   
      

1 1

2 2

00
0

0 s

II q q

K S g DM q q


 



     
     
      




(7)

If one considers, ( ) A pt

mn mn
q t e , a form of sol-

ution as simple harmonic time dependence, the re-
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Fig. 4 Flutter convergence test of simply supported panel

Fig. 3 The evolution of mode 11 and mode 21and the flutter mode shape

sulting eigenvalues ( R Ip p ip  ) from Eq. (7), in 

general, are complex that determines the stability 

of the system. So, while the real part of the ei-

genvalue is negative, the system is stable and if 

the real part is positive the system is unstable. 

Similarly, as the real part becomes zero, the sys-

tem is considered neutral, a point, generally re-

ferred to flutter onset at which critical flutter ve-

locity and critical flutter frequency are acquired. 

Non-dimensional parameters are introduced to gen-

eralize the results. They are non-dimensional dy-

namic pressure ( * 3 22 a / D M 1)q   ), non-dimen-

sional frequency (  * 2 /I Ip a h D  ), and damping 

( 
*
R Rp  ).

2.2 Convergence Test

The flutter characteristics of typical aluminum 

rectangular simply supported panel (a/b = 1, a/h =

100) is presented in Table 1. The following prop-

erties are used for the convergence test: E = 70

GPa,  = 2700 kg/m3, and  = 0.3. A simply sup-

ported panel has a deformation shape in a form 

of traveling wave with exponential spatial 

growth(4). In such case, a large number of modes 

are required to obtain accurate results. Therefore, 

to specify the necessary number of modes, a con-

vergence test is preferable. The test is carried out 

for various combination of modes given by the 

number of half sine waves in the flow direction 

(m) and perpendicular to the flow direction (n) as 

shown in Fig. 4. It is observed that for m > 5 the 

flutter boundary values are converging well irre-

spective of a number of half sine wave perpendic-

ular to the flow direction. Therefore, to obtain 

quantitatively accurate results, 24 modes for m = 8 
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Fig. 2 Eigenvalues plot of 1st and 2nd mode

and n = 3 are selected.

Figure 2 illustrate eigenvalue plot considering 

24 modes in which the non-dimensional pressure 

parameter,   * 0  , represent free vibration solution. 

While for   * 0  , there exist an infinite number of 

coalescence of two structural modes. However, the 

lowest value of   *  at which the first flutter occur 

is physically accepted. Thus, the first flutter is ob-

served at   * 514.59
cr
   and * 43.02

cr
  . Similarly, 

Figure 3 illustrates the evolution of mode shape 

of first two dominant modes when  the dynamic 

pressure is increased until mode 11 and mode 21 

become single flutter mode at 
*

514.59
cr

  . This 

shows that the lateral deflection is concentrated at 

the rare end of the panel. The flutter bounds ob-

tained from the present study are compared with 

the results from the available literature shows a 

very good agreement as listed in Table 1.

Table 1 Comparison of flutter boundary for simply 
supported square panel

 m n   *

cr
   *

cr


Present
4 4 505.2 42.68

8 3 512.5 42.97

Durvasula(5) 4 4 506.52 -

Sander(6) (FEM)   511.8 42.93

Sander(6) (Exact)   512.6 42.99

Abbas(7) 4 4 536.9 43.96

3. Emulated Panel Flutter 

using Concentrated forces

The emulating of real panel flutter by replacing 

distributed aerodynamic forces with concentrated 

forces has not been researched previously. 

Practically, the main application of concentrated 

forces is to simulate aerodynamics. The dynamic 

shakers can be controlled to provide necessary 

concentrated force to mimic aerodynamics in order 

to determine flutter speed and flutter frequency. 

This study could be significant to circumvent 

complicated wind tunnel testing as well as appli-

cable for general research propose. Meanwhile, the 

viability of approximating distributed aerodynamic 

loads to few concentrated forces through numer-

ical integration method is considered.

3.1 Mathematical Formulation

An attempt is made to replace aerodynamic 

forces with a few concentrated forces using nu-

merical integration method. We assumed that the 

total force contributed by a number of con-

centrated forces is same as that of the distributed 

aerodynamic forces respectively. In other words, 

the resultant force from numerical integration of 

distributed aerodynamic pressure for entire panel 

and the sum of k number of concentrated force is 

equivalent. And, the distributed aerodynamic pres-

sure is evaluated using the piston theory. Thus, 

the total resultant force is expressed as
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F Pdxdy
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(8)

Similarly, the work done by each of the con-

centrated forces are proportional to displacement it 

creates at unknown coordinates (xk, yk) in the 

panel. The displacement at unknown coordinates 

are calculated using normal modes (Wuv) with 

Dirac delta function. Thus the mathematical ex-

pression of work done by the concentrated forces 

is the product of Eq. (8) and displacement given 

by normal modes at the location of concentrated 

forces given as

 
( , ) ( , ) ( ,y y )c u v uv k kc m n

u v

E W x xF     (9)

where, Dirac delta function: ( , y y ) 0,
k k

x x   

,
k k

x x y y 

Furthermore, for a system of equations, the total 

work done by the concentrated forces can be ex-

pressed in matrix notation given by Eq. (10) 

where the first term    ( )c k
k

S  is approximated aer-

odynamic stiffness matrix and the second term  
   ( )c k

k

D  is approximated aerodynamic damping 

matrix due to concentrated forces.

         
c c ck k

k k

E S q g D q     (10)

Depending upon the selection of m  and n, the 

mode indicators, the matrices in Eq. (10) are ex-

pressed as follows for each concentrated forces.

 

 

1111 1211 1311 2111 2211 2311 11

1112 1212 1312 2112 2212 2312 12

1113 1213 1313 2113 2213 2313 13

1121 1221 1321 2121 2221 2321 21

1122 1222 1322 2122 2222 2322 22

1123

mn

mn

mn

mn

mn

c k

S S S S S S S

S S S S S S S

S S S S S S S

S S S S S S S

S S S S S S S
S

S S


  

  

  

  

  

1223 1323 2123 2223 2323 23

11 12 13 21 22 23

mn

uv uv uv uv uv uv mnuv

S S S S S

S S S S S S S

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

       

       

       

  

 

 

1111 1211 1311 2111 2211 2311 11

1112 1212 1312 2112 2212 2312 12

1113 1213 1313 2113 2213 2313 13

1121 1221 1321 2121 2221 2321 21

1122 1222 1322 2122 2222 2322 22

1123

mn

mn

mn

mn

mn

c k

D D D D D D D

D D D D D D D

D D D D D D D

D D D D D D D

D D D D D D D
D

D D


  

  

  

  

  

1223 1323 2123 2223 2323 23

11 12 13 21 22 23

mn

uv uv uv uv uv uv mnuv

D D D D D

D D D D D D D

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

       

       

       

  

Additionally, the elements in above matrices for 

a fully simply supported panel are expressed in 

terms of normal modes. 

   cos sin sin sin
Area

mnuv k kk

k

m m n u v
S x y x y dxdy

a a a a a

    
  

 
 

   sin sin sin sin
Area

mnu v k kk

k

m n u v
D x y x y dxdy

a a a a

   
  

 
 

Thus, the governing equation of plate motion 

for concentrated loading is written as 

   4

,
, , 0

tt cw x y t h PwD     (11)

The structural formulation is similar to linear 

panel flutter whereas formulation of pressure due 

to concentrated forces is deduced from Eq. (10) 

and the mass normalized flutter equation in modal 

coordinate is constructed.

               0c s ck k
k k

M q g D q K q S q      (12) 

The following equation is in second-order and 

does not allow direct eigenvalue solution so it is 

reduced to standard first-order form by considering 

the transformation of variables, q1 = q and   2q q  .

     
   

   

     
1 1

2 2

0
0

0
0

s c c kk
k k

I
I q q

M q qK S g D



 


 
                     

 




(13)

Further analysis in obtaining eigenvalues require 

assuming a form of solution as simple harmonic. 

Then, the flutter characteristics are determined by 
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the real part of the eigenvalues as explained in 

linear panel flutter section.

There are two important parameters that require 

special attention in order to make current work 

significant. Firstly, it is choosing the number of 

concentrated forces (k) and secondly, their loca-

tions (xk, yk). A number of concentrated forces 

need to be few for practical application. 

Meanwhile, they should be sufficient to perform 

the flutter test. Therefore, the best location of 

concentrated forces is determined by a sequence 

of location optimization.

3.2 Optimization of Locations

The accuracy of flutter boundary depends on 

the locations of concentrated forces on the panel. 

Therefore, an optimization is carried out to de-

termine the best locations of concentrated forces 

that would result in a close solution with linear 

panel flutter. The optimization is based on the in-

built optimization algorithm of MATLAB program 

to minimize the given objective(3).

   
 

 
 

2 2* * * *

* *

c r cr cr c rr r

cr crr r

f
 



   
 



   
      
   

(14)

where, 
  *

cr r
  and 

  *

cr
r

  are referential non-dimen-

sional flutter dynamic pressure and frequency,  

  *
c r  and   *

cr  are non-dimensional flutter dynamic 

pressure and frequency for optimized force 

location.

The location optimization process uses gra-

dient-based methods for minimizing an objective. 

The optimization process is a function of f, initial 

guess coordinates (xi, yi), the lower bound (LB), 

upper bound (UB), and constraints (C) as ex-

pressed in Eq. (15). At first, a set of initial guess 

coordinates of concentrated forces is selected. 

Each of these coordinates has a freedom of move-

ment within the panel defined by a lower bound 

and upper bound. Besides that, the constraints be-

tween concentrated forces locations are useful in 

reducing the computation time. Then, the opti-

mization process examines for the best locations 

within the sub-panels defined by the lower and 

upper bounds by performing flutter analysis using 

Eq. (13) to minimize the objective function.

  , ( , , , , , )k k i ix y L f x y LB UB C (15)

As referred to DWT, the flutter test was ac-

complished on a rectangular plate with one edge 

clamped and remaining edge free using four con-

centrated forces and considering first four modes. 

But in the present study, for simply supported 

boundary condition, the structural modes take a 

form of traveling waves and the comparatively 

large number of modes are required to obtain 

quantitatively accurate results. Hence, compromis-

ing between the concentrated forces number and 

the necessity to obtain meaningful results, more 

than four concentrated forces are desirable.

4. Results and Discussions

An aluminum square panel with simply sup-

ported boundary is selected for numerical analysis. 

The studies are conducted with three different 

panel configuration as shown in Fig. 5 containing 

four, six, and nine concentrated forces 

respectively. These concentrate forces are marked 

as k = 1, 2, … 9. Similarly, the panel is divided 

into k equal sub-panels for a respective number of 

concentrated forces. Dividing panel into a number 

of sub-panel is an efficient way to obtain con-

centrated forces as well as to perform location 

optimization. The non-dimensional dynamic pres-

sure and frequency are obtained by solving ei-

genvalue problem given by Eq. (13) for 24 modes 

(m = 8 and n = 3) using MATLAB program.

Figure 6 shows the eigenvalue plot and a flutter 

mode shape for three different panel config-

urations where the concentrated forces are placed 
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Fig. 5 2 × 2, 3 × 2, and 3 × 3 panel configurations

Fig. 6 Emulated panel flutter analysis of panel con-
figuration 2 × 2, 3 × 2, and 3 × 3 (m = 8, n = 3)

at the center of sub-panel. Using four concentrated 

forces, no flutter behavior is observed. So, the 

number of concentrated forces are increased along 

the flow direction. With six concentrated forces, a 

frequency coalescence between first two natural 

modes is observed. Again, more concentrated 

forces are added in perpendicular to flow 

direction. With the use of nine concentrated 

forces, the coalescence of frequencies is also 

observed.

In order to determine emulated panel flutter 

bounds that are closer to reference linear panel 

 

0 0.333 0.666 1
0

0.333

0.666

1

3X3 panel configuration

0 0.333 0.666 1
0

0.5

1

3X2 panel configuration

optimized location initial guess (center of sub-panel)

Fig. 7 Location optimization of concentrated forces

Fig. 8 Emulate flutter analysis with optimized loca-
tion using 6 concentrated forces (3 × 2 con-
figuration)

flutter bounds, an optimization is carried out to 

find the best locations of six and nine con-

centrated forces as shown in Fig. 7. Figures 8 and 

9 shows an eigenvalues plot for both distributed 

loading and concentrated loading using six and 

nine concentrated forces respectively. It can be ob-

served that there is a good convergence of emu-

lated flutter results for 3 × 2 panel configuration 

using six concentrated forces. However, using nine 
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Fig. 9 Emulate flutter analysis with optimized loca-
tion using 9 concentrated forces (3 × 3 con-
figuration)

Number of Concentrated forces (k)
6 9

o
b

je
c

ti
v

e 
fu

n
c

ti
o

n
 (f

)

0

0.01

0.02

0.03

0.04
center of sub-panel
optimized location

Fig. 10 Objective function 

concentrated forces with 3 × 3 panel configuration 

a noticeable difference between linear and emu-

lated panel flutter bounds is observed. Similarly, 

the objective function from both configurations, 

taking forces at the center of sub-panels and with 

optimized locations are presented in Fig. 10. Such 

that, a minimum objective function is observed for 

the six concentrated forces.

5. Conclusion

The numerical integration method to emulate re-

al panel flutter is performed for a simply sup-

ported square panel. The aerodynamic loading was 

based on the piston theory and structural for-

mulation was based on the classical small-de-

flection theory. The results propose that emulating 

real panel flutter using concentrated forces is 

feasible. Unlike wing flutter, panel flutter requires 

a large number of modes for calculation. Hence, 

different panel configuration can be approached to 

acquire concentrated forces in order to perform 

parametric studies. 
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