• Title/Summary/Keyword: Aerodynamic Interaction

검색결과 242건 처리시간 0.021초

항공기 공력특성 예측을 위한 Navier-Stokes 방정식 기반의 정적 유체-구조 연계 해석 시스템 (A Static Fluid-Structure Interaction Analysis System Based on the Navier-Stokes Equations for the Prediction of Aerodynamic Characteristics of Aircraft)

  • 정성기;두옹안호앙;이영민;이진희;명노신;조태환
    • 한국항공우주학회지
    • /
    • 제36권6호
    • /
    • pp.532-540
    • /
    • 2008
  • 최근 구조변형을 고려한 항공기의 공력특성을 계산하는데 필요한 CFD와 CSD 기법이 연계된 FSI 시스템에 관한 관심이 증대하고 있다. 본 연구에서는 유체유발 구조 변형을 고려한 수렴된 구조형상에 대한 공력특성 예측을 위해 유체-구조 연계 시스템인 FSI(Fluid- Structure Interaction)를 구축하였다. 각 모듈의 연계, 특히 CSD와 CFD의 결합 및 변형된 형상에 대한 공력격자 재생성을 위해 VSI(Volume Spline Interpolation)와 격자 변형 코드를 개발하였으며, 공력과 구조의 해석 모듈로 상용 프로그램인 FLUENT와 NASTRAN을 사용하였다. 구축된 시스템을 DLR-F4 날개에 적용하여 정적 유체-구조 연구를 수행하였으며, 그 결과 마하수 0.75에서 변형된 형상에 대한 양력 및 항력 계수는 약 20.26%, 18.5% 감소하는 것으로 나타났다.

디퓨저 베인에 의한 공진조건에서의 임펠러 구조 안정성 평가 (Structural Stability Evaluation of Impeller in Resonant condition due to Diffuser vanes)

  • 김용세;공동재;신상준;임강수;박기훈
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.877-880
    • /
    • 2017
  • 원심압축기 임펠러의 블레이드는 고속회전과 정상유동 압력에 의한 정적하중이 가해진다. 동시에 임펠러와 디퓨저 베인 간 상호작용에 의해 발생하는 비정상 유동의 공력가진력이 공진조건에서 주기적으로 임펠러를 가진함에 따라 임펠러 블레이드의 고주기피로 파손이 발생할 수 있다. 이에 대한 정밀한 구조응답 예측을 위해 ANSYS를 이용한 비정상 유동 해석과 모드해석을 각기 수행하여 공력가진력과 주요 공진조건을 도출하였다. 이 후 공력-구조를 연계하는 단일방향의 강제진동 해석을 수행하고, 결과들을 토대로 고주기피로에 대한 안전도를 평가하였다.

  • PDF

유체-구조 연성해석을 이용한 능동/수동 유동제어방식이 결합된 고하중 축류 팬의 성능특성 연구 (Investigation on Aerodynamic Performance of a Highly-Loaded Axial Fan with Active/Passive Flow Control Using FSI Analysis)

  • 마상범;김광용;최재호;이원석
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.113-119
    • /
    • 2017
  • An investigation on aerodynamic performance of a highly-loaded axial fan has been conducted to find the effects of tip injection and casing groove on aerodynamic performance in this study. Three-dimensional Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model were used to analyze the fluid flow in the fan with Fluid-Structure Interaction (FSI) analysis. The hexahedral grid was used to construct computational domain, and the grid dependency test drew the optimal grid system. FSI analysis was also carried out to predict the deformation of rotor and stator blades, and the effect of deformation on the aerodynamic performance of axial fan was analyzed compared to the performance predicted without FSI analysis.

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • 제26권6호
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Aerodynamics of a wing section along an entry path in Mars atmosphere

  • Zuppardi, Gennaro;Mongelluzzo, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • 제8권1호
    • /
    • pp.53-67
    • /
    • 2021
  • The increasing interest in the exploration of Mars stimulated the authors to study aerodynamic problems linked to space vehicles. The aim of this paper is to evaluate the aerodynamic effects of a flapped wing in collaborating with parachutes and retro-rockets to reduce velocity and with thrusters to control the spacecraft attitude. 3-D computations on a preliminary configuration of a blunt-cylinder, provided with flapped fins, quantified the beneficial influence of the fins. The present paper is focused on Aerodynamics of a wing section (NACA-0010) provided with a trailing edge flap. The influence of the flap deflection was evaluated by the increments of aerodynamic force and leading edge pitching moment coefficients with respect to the coefficients in clean configuration. The study was carried out by means of two Direct Simulation Monte Carlo (DSMC) codes (DS2V/3V solving 2-D/3-D flow fields, respectively). A DSMC code is indispensable to simulate complex flow fields on a wing generated by Shock Wave-Shock Wave Interaction (SWSWI) due to the flap deflection. The flap angle has to be a compromise between the aerodynamic effectiveness and the increases of aerodynamic load and heat flux on the wing section lower surface.

Coupling effects of vortex-induced vibration for a square cylinder at various angles of attack

  • Zheng, Deqian;Ma, Wenyong;Zhang, Xiaobin;Chen, Wei;Wu, Junhao
    • Wind and Structures
    • /
    • 제34권5호
    • /
    • pp.437-450
    • /
    • 2022
  • Vortex-induced vibration (VIV) is a significant concern when designing slender structures with square cross sections. VIV strongly depends on structural dynamics and flow states, which depend on the conditions of the approaching flow and shape of a structure. Therefore, the effects of the angle of attack on the coupling effects of VIV for a square cylinder are expected to be significant in practice. In this study, the aerodynamic forces for a fixed and elastically mounted square cylinder were measured using wind pressure tests. Aerodynamic forces on the stationary cylinder are firstly discussed by comparisons of variation of statistical aerodynamic force and wind pressure coefficient with wind angle of attack. The coupling effect between the aerodynamic forces and the motion of the oscillating square cylinder by VIV is subsequently investigated in detail at typical wind angels of attack with occurrence of three typical flow regimes, i.e., leading-edge separation, separation bubble (reattachment), and attached flow. The coupling effect are illustrated by discussing the onset of VIV, characteristics of aerodynamic forces during VIV, and interaction between motion and aerodynamic forces. The results demonstrate that flow states can be classified based on final separation points or the occurrence of reattachment. These states significantly influence coupling effects of the oscillating cylinder. Vibration enhances vortex shedding, which creates strong fluctuations in aerodynamic forces. However, differences in the lock-in range, aerodynamic force, and interaction process for angles of attack smaller and larger than the critical angle of attack revealed noteworthy characteristics in the VIV of a square cylinder.

풍력터빈 토크제어의 특성 고찰 (A Study on Properties of Torque Control for Wind Turbine)

  • 임채욱
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1157-1162
    • /
    • 2009
  • The aerodynamic torque and power caused by the interaction between the wind and blade of wind turbine are highly nonlinear. For this reason, the overall dynamic behaviors of wind turbine have nonlinear characteristics. The aerodynamic nonlinearity also affects properties of torque control for wind turbine. In this paper, the nonlinear aerodynamic property according to the wind speed below rated power and its effects on the torque control system are investigated. Nonlinear parameter representing change of aerodynamic torque with respect to rotor speed is obtained by linearization technique. Effects of this aerodynamic nonlinear parameter on the closed-loop torque system with PI controller for an 1.5 MW wind turbine are presented.

프로펠러와 고양력 장치와의 공력간섭에 대한 수치해석 연구 (NUMERICAL STUDY OF PROPELLER AND HIGH LIFT DEVICE AERODYNAMIC INTERFERENCES)

  • 박영민;김철완;정진덕;이해창
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.47-54
    • /
    • 2011
  • A rotating propeller of turboprop aircraft gives much effect on the aerodynamic characteristics of wing such as lift, moment and stall. Specially propeller effect on the wing surface is much more dominant when aircrafts are in landing or take-off conditions. In the present paper, three dimensional Navier-Stokes simulations for the interaction of propeller and wing were carried out for medium sized turboprop aircraft. For rotating propeller, unsteady sliding mesh method was used to simulate a relative motion between moving and static bodies. For the power effect analysis in landing and take off configurations, double slotted flap was also considered and the aerodynamic characteristics were investigated. It was shown that the propeller slipstream enhanced the lift slope including maximum lift by eliminating local flow separation region and this enhancement was more dominant with high lift device.

정익과 동익의 상호작용을 고려한 익렬의 공력 최적 설계 (Optimization Design of Cascade with Rotor-Stator Interaction Effects)

  • 조장근;정영래;박원규
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.293-299
    • /
    • 2001
  • Since the previous cut-and-try design algorithm require much cost and time, it has recently been concerned the automatic design technique using the CFD and optimum design algorithm. In this study, the Navier-Stokes equations is solved to consider the more detail viscous flow informations of cascade interaction and O-H multiblock grid system is generated to impose an accurate boundary condition. The cubic-spline interpolation is applied to handle a relative motion of a rotor to the stator. To validate present procedure, the time averaged aerodynamic loads are compared with experiment and good agreement obtained. Once the N-S equations have been solved, the computed aerodynamic loads may be used to computed the sensitivities of the aerodynamic objective function. The Modified Method of feasible Direction(MMFD) is usef to compute the

  • PDF

프로펠러 후류 효과로 인한 날개의 공력 특성 수치해석 (Numerical Simulation of Propeller Slipstream Effect on Wing Aerodynamic Characteristics)

  • 박영민;김철완;정진덕;이해창
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.202-205
    • /
    • 2011
  • A rotating propeller of turboprop aircraft gives much effect on the aerodynamic characteristics of wing such as lift, moment and stall. Specially, a rotating propeller changes the lift and moment characteristics when aircrafts are in landing or take-off condition. In the present paper, 3-dimensional Navier-Stokes simulations for the interaction of propeller and wing were carried out. For rotating propeller, unsteady sliding mesh method was used to simulate a relative motion. For the power effect analysis in landing and take off configurations, double slotted flap was also considered and the aerodynamic characteristics were investigated. It was shown that the propeller slipstream enhanced the lift slope including maximum lift and this enhancement was more dominant with high lift device.

  • PDF