Browse > Article
http://dx.doi.org/10.5139/JKSAS.2008.36.6.532

A Static Fluid-Structure Interaction Analysis System Based on the Navier-Stokes Equations for the Prediction of Aerodynamic Characteristics of Aircraft  

Jung, Sun-Ki (경상대학교 기계항공공학부 대학원)
Anh Duong, Hoang (경상대학교 기계항공공학부 대학원)
Lee, Young-Min (경상대학교 기계항공공학부 대학원)
Lee, Jin-Hee (경상대학교 기계항공공학부 대학원)
Myong, Rho-Shin (경상대학교 기계항공공학부)
Cho, Tae-Hwan (경상대학교 기계항공공학부)
Publication Information
Journal of the Korean Society for Aeronautical & Space Sciences / v.36, no.6, 2008 , pp. 532-540 More about this Journal
Abstract
Recently there are growing interests in calculating aerodynamic characteristics of aircraft configurations with structural deformation using the FSI(Fluid-Structure Interaction) system in which CFD(Computational Fluid Dynamics) and CSD(Computational Structure Dynamics) modules are coupled. In this paper the FSI system comprised of CAD, CFD, CSD, VSI(Volume Spline Interpolation) and grid deformation modules was constructed in order to investigate aerodynamic characteristics of the deformed shape. In the process VSI and grid generation modules are developed to combine CSD and CFD routines and to regenerate the aerodynamic grids for the deformed shape, respectively. For the CFD and CSD analysis, commercial programs FLUENT and NASTRAN were used. As a test model, DLR-F4 wing configuration was chosen and its aerodynamic characteristics were calculated by applying the static FSI system. It was shown that lift and drag coefficients of the wing at mach number 0.75 are reduced to 20.26% and 18.5%, respectively, owing to the structural deformation.
Keywords
Fluid-Structure Interaction; Volume Spline Interpolation; Grid Deformation; CFD; CSD;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Utyuzhnikov, S. V., 2005. "Generalized wall functions and their application for simulation of turbulent flows", International Journal for Numerical Methods in Fluids, Vol. 47, pp. 1323-1328   DOI   ScienceOn
2 FLUENT Inc., 2003, FLUENT 6.1 User's Guide
3 권진회, 강경국, 박찬우, 김승호, 2002, "다중스파날개의 유한요소 이상화 방법에 관한 인자 연구", 한국항공우주학회지, 제30권 제6호, pp. 107-115
4 Shyy, W., Papila, N., Vaidyanathan, R., and Tucker, K., 2001, "Global design optimization for aerodynamics and rocket propulsion components", Progress in Aerospace Sciences, Vol. 37, pp. 59-118   DOI   ScienceOn
5 Prananta B. B., and Meijer J. J., 2002, "Transonic static aeroelastic simulations of fighter aircraft", 23rd Congress of the International Council on Aeronautical Sciences, Toronto, Canada
6 김동현, 정상준, 이인, 2001, "정적 공탄성 효과를 고려한 Wing-Box 구조 날개의 천음속/초음속 공탄성 해석", 한국항공우주학회지, 제29권 제3호, pp. 17-27
7 Blazek J., 2005, "Computational Fluid Dynamics: Principles and Applications", Elsevier, pp. 441-444
8 Zeng D., and Ethier C. R., 2005, "A semi-torsional spring analogy model for updating unstructured meshes in 3D moving domains", Finite Elements in Analysis and Design, Vol. 41, pp. 1118-1139   DOI   ScienceOn
9 A. D. Hoang, 이영민, 정성기, A. T. Nguyen, 명노신, 2007, "복잡한 형상에 관한 삼차원 변형 Multi-Block 정렬격자 프로그램 개발", 한국전산유체공학회, 제12권 제4호, pp. 1-10   과학기술학회마을
10 Dubuc L., Cantariti F., Woodgate M., Gribben B., Badcock K. J., and Richards B. E., 2000, "A grid deformation technique for unsteady flows computation", International Journal for Numerical Method in Fluids, Vol. 32, pp. 285-311   DOI   ScienceOn
11 Spekreijse S. P., Prananta B. B., and Kok J. C., 2002, "A simple, robust and fast algorithm to compute deformations of multi-block structured grids", National Aerospace Laboratory NLR, NLR-TP-2002-105
12 Tsai H. M., Wong A. S. F., Cai J., Zhu Y., and Liu F., 2001, "Unsteady flow calculation with a parallel moving mesh algorithm", AIAA Journal, Vol. 39, No. 6, pp. 1021-1029   DOI   ScienceOn
13 Harder, R. L., Desmarais, R. N., 1972, "Interpolation using surface spline", Journal of Aircraft, Vol. 9, No. 2, pp. 189-191   DOI   ScienceOn
14 Advisory Group for Aerospace Research & Development, 1944, AGARD-AR-303, Vol. 2
15 Guruswamy G. P. and Yang T. Y., 1980, "Aeroelastic Time-Response Anlysis of Thin Airfoils by Transonic Code LTRAN2", Computer and Fluids, Vol. 9, No. 4, pp. 409-425   DOI   ScienceOn
16 Hounjet, M. H. L., Meijer, J. J., 1995, "Evaluation of elastomechanical and aerodynamic data transfer methods for non-planar configurations in computational aeroelastic analysis", National Aerospace Laboratory NLR, NLR-TP-95690 U
17 김병곤, 전상욱, 정용희, 김정화, 이동호, 2007, "정적 공탄성 해석과 최적화 문제에서의 동적 격자의 효용성", 한국항공우주학회지, 제35권 제2호, pp. 87-93   DOI
18 최동수, 외7명, 2007, "전산유체/전산구조 연계 방법을 사용한 항공기 날개의 정적 공탄성 해석", 한국항공우주학회지, 제35권 제4호, pp. 287-294   DOI
19 Blom F.J., 2000, "Considerations on the spring analogy", International Journal for Numerical Methods in Fluid, Vol. 32, pp. 647-668   DOI   ScienceOn