• Title/Summary/Keyword: Aerial Target System

Search Result 67, Processing Time 0.027 seconds

Visual Target Tracking and Relative Navigation for Unmanned Aerial Vehicles in a GPS-Denied Environment

  • Kim, Youngjoo;Jung, Wooyoung;Bang, Hyochoong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.258-266
    • /
    • 2014
  • We present a system for the real-time visual relative navigation of a fixed-wing unmanned aerial vehicle in a GPS-denied environment. An extended Kalman filter is used to construct a vision-aided navigation system by fusing the image processing results with barometer and inertial sensor measurements. Using a mean-shift object tracking algorithm, an onboard vision system provides pixel measurements to the navigation filter. The filter is slightly modified to deal with delayed measurements from the vision system. The image processing algorithm and the navigation filter are verified by flight tests. The results show that the proposed aerial system is able to maintain circling around a target without using GPS data.

A COMPARISON STUDY OF WIND TUNNEL TEST AND AERODYNAMIC ANALYSIS FOR TARGET DRONE (무인비행체 풍동시험과 공력해석의 비교 연구)

  • Kim, H.I.;Kim, J.S.;Lee, S.M.;Kim, K.T.;Kim, M.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.17-20
    • /
    • 2010
  • An aerial target system is used for the purpose of experimental test and fire training of missile that newly developed and in mass production. Since the target drones of aerial target systems are monopolized by several major countries so that they are selling at a high price. In this paper, we present the CFD simulation results on a new target drone that Kyungan co. ltd is developing with their own technologies. The presented CFD simulation was conducted in the same conditions of a wind tunnel tests and we could obtain the simulation results of the lift and drag values were in errors by less than 15 percent compared to the experiment. The simulation results were used to determine the modified shapes of new prototype target drone that could fly safely.

  • PDF

On-Site vs. Laboratorial Implementation of Camera Self-Calibration for UAV Photogrammetry

  • Han, Soohee;Park, Jinhwan;Lee, Wonhee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.349-356
    • /
    • 2016
  • This study investigates two camera self-calibration approaches, on-site self-calibration and laboratorial self-calibration, both of which are based on self-calibration theory and implemented by using a commercial photogrammetric solution, Agisoft PhotoScan. On-site self-calibration implements camera self-calibration and aerial triangulation by using the same aerial photos. Laboratorial self-calibration implements camera self-calibration by using photos captured onto a patterned target displayed on a digital panel, then conducts aerial triangulation by using the aerial photos. Aerial photos are captured by an unmanned aerial vehicle, and target photos are captured onto a 27in LCD monitor and a 47in LCD TV in two experiments. Calibration parameters are estimated by the two approaches and errors of aerial triangulation are analyzed. Results reveal that on-site self-calibration excels laboratorial self-calibration in terms of vertical accuracy. By contrast, laboratorial self-calibration obtains better horizontal accuracy if photos are captured at a greater distance from the target by using a larger display panel.

Development of an electric powered, high speed, low-noise, small aerial target drone platform (전기 동력 고속 저소음 소형 대공 표적기 플랫폼 개발)

  • Taekyoon Kim;Youngjin Kim
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.3
    • /
    • pp.76-85
    • /
    • 2024
  • Recently, from a global perspective, the use of small unmanned aerial vehicles in terrorism and warfare is increasing, and the need for anti-drone shooting training targeting small UAVs is increasing. However, in reality, there are many cases in Korea where anti-drone shooting training is restricted, due to complaints such as noise. In this paper, we describe the development and testing of an electric-powered direct strike type high-speed, low-noise small aerial target drone. To achieve the flight speed and endurance required for shooting training, target drone sizing was performed, and aerodynamic performance analysis was conducted using a CFD program. Based on the performance analysis, the motor propulsion system was selected and a variable pitch propeller system was designed, and performance tests were performed on a ground test rig. Finally, the target flight speed, flight time, and flight noise level were confirmed through flight tests.

Development of Autonomous Aerial Target System Applying the Modular Platform (모듈형 플랫폼을 적용한 자율비행 무인표적기 시스템 개발)

  • Kim, Taewook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.30 no.3
    • /
    • pp.109-116
    • /
    • 2022
  • A modular platform development technique was proposed to minimize development cost and development period by utilizing the already developed unmanned Aerial target AVT, which has been operated and verified for many years. New Mission Profile was designed and structural analysis was performed through finite element analysis (FEA) by analyzing mission requirements for visual short-range, non-visible mid-range, and long-range targets. The targets are used for guided missile anti-aircraft training. In addition, avionics systems including flight control computers for autonomous flights were developed to verify their conformance by performing launcher take-off tests with rapid acceleration changes and autonomous flight tests at a maximum speed of 300km per hour.

A Study of Automatic Recognition on Target and Flame Based Gradient Vector Field Using Infrared Image (적외선 영상을 이용한 Gradient Vector Field 기반의 표적 및 화염 자동인식 연구)

  • Kim, Chun-Ho;Lee, Ju-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.63-73
    • /
    • 2021
  • This paper presents a algorithm for automatic target recognition robust to the influence of the flame in order to track the target by EOTS(Electro-Optical Targeting System) equipped on UAV(Unmanned Aerial Vehicle) when there is aerial target or marine target with flame at the same time. The proposed method converts infrared images of targets and flames into a gradient vector field, and applies each gradient magnitude to a polynomial curve fitting technique to extract polynomial coefficients, and learns them in a shallow neural network model to automatically recognize targets and flames. The performance of the proposed technique was confirmed by utilizing the various infrared image database of the target and flame. Using this algorithm, it can be applied to areas where collision avoidance, forest fire detection, automatic detection and recognition of targets in the air and sea during automatic flight of unmanned aircraft.

A Study on Target Selection from Seeker Image of Aerial Vehicle in Sea Environment (해상 탐지 영상에서의 비행체 표적 선정에 관한 연구)

  • Kim, Ki-Bum;Baek, In-Hye;Kwon, Ki-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.708-716
    • /
    • 2017
  • We deal with the target selection in seeker-detection image through network, using the detection information from aerial vehicle and the target information from surveillance and reconnaissance system. Especially, we constrain the sea battle environment, where it is difficult to perform scene-matching rather than land. In this paper, we suggest the target selection algorithm based on the confidence estimation with respect to distance and size. In detail, we propose the generation method of reference point for distance evaluation, and we investigate the effect of pixel margin and target course for size evaluation. Finally, the proposed algorithm is simulated and analyzed through several scenarios.

Design of Navigation System for Low Cost Unmanned Aerial Vehicle (저가형 무인항공기 운용을 위한 항법시스템 설계)

  • Lee, Jang-Ho;Kim, Sung-Pil;Park, Mu-Hyeok;Ahn, Iee-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.2
    • /
    • pp.105-111
    • /
    • 2004
  • This paper describes the design of navigation system for an unmanned target drone which is operated by Korean army as for anti-air gun shooting training. Current target drone is operated by pilot control of on-board servo motor via remote control system. Automatic flight control system for the target drone greatly reduces work load of ground pilot and can increase application area of the drone. Most UAVs being operated nowdays use high-priced sensors as AHRS and IMU to measure the attitude, but those are costly. This paper introduces the development of low-cost automatic flight control system with low-cost sensors. The integrated automatic flight control system has been developed by integrating combining power module, switching module, monitoring module and RC receiver as an one module. The performance of navigation for low cost unmanned aerial vehicle, unmanned target drone as our test bed in this paper is verified by both Hardware in the loop simulation(HILS) to test performance of GPS as GPS output frequency high and results of flight test.

  • PDF

Tracking of ground objects using image information for autonomous rotary unmanned aerial vehicles (자동 비행 소형 무인 회전익항공기의 영상정보를 이용한 지상 이동물체 추적 연구)

  • Kang, Tae-Hwa;Baek, Kwang-Yul;Mok, Sung-Hoon;Lee, Won-Suk;Lee, Dong-Jin;Lim, Seung-Han;Bang, Hyo-Choong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.5
    • /
    • pp.490-498
    • /
    • 2010
  • This paper presents an autonomous target tracking approach and technique for transmitting ground control station image periodically for an unmanned aerial vehicle using onboard gimbaled(pan-tilt) camera system. The miniature rotary UAV which was used in this study has a small, high-performance camera, improved target acquisition technique, and autonomous target tracking algorithm. Also in order to stabilize real-time image sequences, image stabilization algorithm was adopted. Finally the target tracking performance was verified through a real flight test.

Development of Automatic flight Control System for Low Cost Unmanned Aerial Vehicle (저가형 무인 항공기의 자동비행시스템 개발)

  • Yoo, Hyuk;Lee, Jang-Ho;Kim, Jae-Eun;An, Yi-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.2
    • /
    • pp.131-138
    • /
    • 2004
  • Automatic flight control system (AFCS) for a low-cost unmanned aerial vehicle is described in this paper. Development process and block diagram of the AFCS are introduced. The flight control law for longitudinal and lateral channel autopilot is designed using optimization process. In this procedure, the performance index is composed of desired location of closed loop system poles and H$_2$norm of the resultant flight control system. This procedure is applied to the autopilot design of an unmanned target vehicle. Performance of the AFCS is evaluated by processor-in-the-loop simulation test and flight test. These results show that the AFCS has acceptable performance fur low cost UAV.