• Title/Summary/Keyword: Advanced type

Search Result 4,111, Processing Time 0.03 seconds

Effects of Hydrogen Reduction in Microstructure, Mechanical and Thermoelectric Properties of Gas Atomized n-type Bi2Te2.7 Se0.3 Material

  • Rimal, Pradip;Yoon, Sang-Min;Kim, Eun-Bin;Lee, Chul-Hee;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.126-131
    • /
    • 2016
  • The recent rise in applications of thermoelectric materials has attracted interest in studies toward the fabrication of thermoelectric materials using mass production techniques. In this study, we successfully fabricate n-type $Bi_2Te_{2.7}Se_{0.3}$ material by a combination of mass production powder metallurgy techniques, gas atomization, and spark plasma sintering. In addition, to examine the effects of hydrogen reduction in the microstructure, the thermoelectric and mechanical properties are measured and analyzed. Here, almost 60% of the oxygen content of the powder are eliminated after hydrogen reduction for 4 h at $360^{\circ}C$. Micrographs of the powder show that the reduced powder had a comparatively clean surface and larger grain sizes than unreduced powder. The density of the consolidated bulk using as-atomized powder and reduced atomized powder exceeds 99%. The thermoelectric power factor of the sample prepared by reduction of powder is 20% better than that of the sample prepared using unreduced powder.

Investigation of Ball Size Effect on Microstructure and Thermoelectric Properties of p-type BiSbTe by Mechanical Alloying

  • Lwin, May Likha;Yoon, Sang-min;Madavali, Babu;Lee, Chul-Hee;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.120-125
    • /
    • 2016
  • P-type ternary $Bi_{0.5}Sb_{1.5}Te_3$ alloys are fabricated via mechanical alloying (MA) and spark plasma sintering (SPS). Different ball sizes are used in the MA process, and their effect on the microstructure; hardness, and thermoelectric properties of the p-type BiSbTe alloys are investigated. The phases of milled powders and bulks are identified using an X-ray diffraction technique. The morphology of milled powders and fracture surface of compacted samples are examined using scanning electron microscopy. The morphology, phase, and grain structures of the samples are not altered by the use of different ball sizes in the MA process. Measurements of the thermoelectric (TE) transport properties including the electrical conductivity, Seebeck coefficient, and power factor are measured at temperatures of 300-400 K for samples treated by SPS. The TE properties do not depend on the ball size used in the MA process.

Epigenetically Upregulated T-Type Calcium Channels Contribute to Abnormal Proliferation of Embryonic Neural Progenitor Cells Exposed to Valproic Acid

  • Kim, Ji-Woon;Oh, Hyun Ah;Kim, Sung Rae;Ko, Mee Jung;Seung, Hana;Lee, Sung Hoon;Shin, Chan Young
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.389-396
    • /
    • 2020
  • Valproic acid is a clinically used mood stabilizer and antiepileptic drug. Valproic acid has been suggested as a teratogen associated with the manifestation of neurodevelopmental disorders, such as fetal valproate syndrome and autism spectrum disorders, when taken during specific time window of pregnancy. Previous studies proposed that prenatal exposure to valproic acid induces abnormal proliferation and differentiation of neural progenitor cells, presumably by inhibiting histone deacetylase and releasing the condensed chromatin structure. Here, we found valproic acid up-regulates the transcription of T-type calcium channels by inhibiting histone deacetylase in neural progenitor cells. The pharmacological blockade of T-type calcium channels prevented the increased proliferation of neural progenitor cells induced by valproic acid. Differentiated neural cells from neural progenitor cells treated with valproic acid displayed increased levels of calcium influx in response to potassium chloride-induced depolarization. These results suggest that prenatal exposure to valproic acid up-regulates T-type calcium channels, which may contribute to increased proliferation of neural progenitor cells by inducing an abnormal calcium response and underlie the pathogenesis of neurodevelopmental disorders.

Preparation and Characteristics of Soda Lime for Carbon Dioxide Absorption (이산화탄소 흡수를 위한 소다라임 제조 및 특성)

  • Young-Jin Kim;Seok-Je Kwon;Jun-Hyung Seo;Yang-Soo Kim;Kye-Hong Cho;Jin-Sang Cho
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.52-58
    • /
    • 2023
  • In this study, soda lime was prepared from slaked lime to expand the scope of limestone use. To evaluate carbon dioxide absorption, an extruder-type and disc-type pelletizers were used to make the soda lime using bentonite as an additive. Regardless of the pelletizing process, the peak of CaCO3 was confirmed in soda lime due to its reaction with carbon dioxide. Furthermore, it was confirmed that both calcite and aragonite were present together. The soda lime prepared using the disc-type pelletizer showed a larger specific surface area than that prepared using the extruder-type pelletizer did, and the specific surface area improved on adding bentonite. The carbon dioxide absorption rate increased under the sample condition with an enhanced specific surface area.

Modified Design of Floating Type Photovoltaic Energy Generation System (부유식 태양광 에너지 발전시설의 수정설계)

  • Lee, Young-Geun;Joo, Hyung-Joong;Nam, Jeong-Hun;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.4
    • /
    • pp.18-27
    • /
    • 2010
  • We had designed and constructed floating type photovoltaic energy generation system. In this paper, we present the result of investigations pertaining to the development of links between unit modules of the floating type photovoltaic energy generation system. The link system installed between the unit modules is made of pultruded FRP, tire, and polyethilene synthetic fiber rope. The link system is analized by the finite element method. The floating type photovoltaic energy generation system consisted of unit modules connected by link system is installed successfully at sea site. In addition, we present the modified design of the floating type photovoltaic energy generation system based on the proto type system.

  • PDF

Carbon-Nanotubes Grown from Spin-Coated Nanoparticles for Field-Emission Displays

  • Kim, Do-Yoon;Yoo, Ji-Beom;Han, In-Taek;Kim, Ha-Jin;Kim, Ha-Jong;Jin, Yong-Wan;Kim, Jong-Min
    • Journal of Information Display
    • /
    • v.6 no.2
    • /
    • pp.19-24
    • /
    • 2005
  • The density controlled carbon nanotubes (CNTs) are grown on the iron acetate nanoparticles by using the freeze-dry method. The iron-acetate [Fe(II)$(CH_3COO)_2$] solution is used to prepare the catalytic iron nanoparticles. The density of CNTs is controlled in order to enhance the field emission process. Furthermore, the patterning of the iron nanoparticle catalyst-layer for the fabrication of electronic devices is simply achieved by using alkaline solution, TMAH (tetramethylammonium hydroxide). We applied this patterning process of catalyst layer to form the electron emitter with under-gate type triode structure.

Direct Printable Nanowire p-n Junction device

  • Lee, Tae-Il;Choi, Won-Jin;Kar, Jyoti Prakash;Moon, Kyung-Ju;Lee, Min-Jung;Jun, Joo-Hee;Baik, Hong-Koo;Myoung, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.30.2-30.2
    • /
    • 2010
  • Nano-scale p-n junction can generate various nano-scale functional devices such as nanowire light emitting diode, nanowire solar cell, and nanowire sensor. The core shell type nanowire p-n junction has been considered for the high efficient devices in many previous reports. On the other hand, although device efficiency is relatively lower, the cross bar type p-n junction has simple topological structure, suggested by C.M. Lieber group, to integrate easily many p-n junction devices in one board. In this study, for the integration of the cross bar nanowire p-n junction device, a simple fabrication route, employed dielectrophoretic array and direct printing techniques, was demonstrated by the successful fabrication and programmable integration of the nanowire cross bar p-n junction solar cell. This direct printing process will give the single nanowire solar cell the opportunity of the integration on the circuit board with other nanowire functional devices.

  • PDF

Characteristics of the Plasma Source for Ground Ionosphere Simulation Surveyed by Disk-Type Langmuir Probe

  • Ryu, Kwangsun;Lee, Junchan;Kim, Songoo;Chung, Taejin;Shin, Goo-Hwan;Cha, Wonho;Min, Kyoungwook;Kim, Vitaly P.
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.343-352
    • /
    • 2017
  • A space plasma facility has been operated with a back-diffusion-type plasma source installed in a mid-sized vacuum chamber with a diameter of ~1.5 m located in Satellite Technology Research Center (SaTReC), Korea Advanced Institute of Science and Technology (KAIST). To generate plasma with a temperature and density similar to the ionospheric plasma, nickel wires coated with carbonate solution were used as filaments that emit thermal electrons, and the accelerated thermal electrons emitted from the heated wires collide with the neutral gas to form plasma inside the chamber. By using a disk-type Langmuir probe installed inside the vacuum chamber, the generation of plasma similar to the space environment was validated. The characteristics of the plasma according to the grid and plate anode voltages were investigated. The grid voltage of the plasma source is realized as a suitable parameter for manipulating the electron density, while the plate voltage is suitable for adjusting the electron temperature. A simple physical model based on the collision cross-section of electron impact on nitrogen molecule was established to explain the plasma generation mechanism.

Interactions between early- and late-type galaxies and morphology transformation

  • Hwang, Jeong-Sun;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.40.1-40.1
    • /
    • 2013
  • We perform a set of N-body/SPH simulations of galaxy interactions between early- and late-type galaxies with the mass ratio of 2 to 1. We show that mass transfer during a fly by interaction (the closest approach distance ~50kpc) can cause the morphology transformation of an early-type galaxy to a late type. In our simulations, we vary the orbital parameters of the interactions and the cold gas fraction of the late-type galaxy to compare how the morphology transformation is affected by the amount of mass transfer and orbital angular momentum of cold gas accreted to the early type. We also include hot halo gas in the galaxy models and show the location of the tidal bridge can be influenced by the shock generated during the collision.

  • PDF

FUZZY TRANSPORTATION PROBLEM WITH ADDITIONAL CONSTRAINT IN DIFFERENT ENVIRONMENTS

  • BUVANESHWARI, T.K.;ANURADHA, D.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.933-947
    • /
    • 2022
  • In this research, we presented the type 2 fuzzy transportation problem with additional constraints and solved by our proposed genetic algorithm model, and the results are verified using the softwares, genetic algorithm tool in Matlab and Lingo. The goal of our approach is to minimize the cost in solving a transportation problem with an additional constraint (TPAC) using the genetic algorithm (GA) based type 2 fuzzy parameter. We reduced the type 2 fuzzy set (T2FS) into a type 1 fuzzy set (T1FS) using a critical value-based reduction method (CVRM). Also, we use the centroid method (CM) to obtain the corresponding crisp value for this reduced fuzzy set. To achieve the best solution, GA is applied to TPAC in type 2 fuzzy parameters. A real-life situation is considered to illustrate the method.