Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.2.120

Investigation of Ball Size Effect on Microstructure and Thermoelectric Properties of p-type BiSbTe by Mechanical Alloying  

Lwin, May Likha (Division of Advanced Materials Engineering, Kongju National University)
Yoon, Sang-min (Division of Advanced Materials Engineering, Kongju National University)
Madavali, Babu (Division of Advanced Materials Engineering, Kongju National University)
Lee, Chul-Hee (Division of Advanced Materials Engineering, Kongju National University)
Hong, Soon-Jik (Division of Advanced Materials Engineering, Kongju National University)
Publication Information
Journal of Powder Materials / v.23, no.2, 2016 , pp. 120-125 More about this Journal
Abstract
P-type ternary $Bi_{0.5}Sb_{1.5}Te_3$ alloys are fabricated via mechanical alloying (MA) and spark plasma sintering (SPS). Different ball sizes are used in the MA process, and their effect on the microstructure; hardness, and thermoelectric properties of the p-type BiSbTe alloys are investigated. The phases of milled powders and bulks are identified using an X-ray diffraction technique. The morphology of milled powders and fracture surface of compacted samples are examined using scanning electron microscopy. The morphology, phase, and grain structures of the samples are not altered by the use of different ball sizes in the MA process. Measurements of the thermoelectric (TE) transport properties including the electrical conductivity, Seebeck coefficient, and power factor are measured at temperatures of 300-400 K for samples treated by SPS. The TE properties do not depend on the ball size used in the MA process.
Keywords
$Bi_{0.5}Sb_{1.5}Te_3$ alloys; Mechanical alloying; Spark plasma sintering; Thermoelectric properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. J. Snyder and E. S. Toberer: Nat. Mater., 7 (2008) 105.   DOI
2 M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial and P. Gogna: Adv. Mater., 19 (2007) 1043.   DOI
3 L.E. Bell: Science, 321 (2008) 1457.   DOI
4 T. C. Harman, P. J. Taylor, M. P. Walsh and B. E. LaForge: Science, 297 (2002) 2229.   DOI
5 B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren: Science, 320 (2008) 634.   DOI
6 C. H. Lim, D. C. Cho, Y. S. Lee and C. H. Lee: J. Korean Phys. Soc., 46 (2005) 995.
7 R. Venkatasubramanian, E. Siivola, T. Colpitts and B. O'Quinn: Nature, 413 (2001) 597.   DOI
8 B. Madavali, H.-S. Kim and S.-J. Hong: J. Electron. Mater., 43 (2014) 2390.   DOI
9 H.-S. Kim and S.-J. Hong: J. Alloys Compd., 586 (2014) S428.   DOI
10 T. Zhang, Q. S. Zhang, J. Jiang, Z. Xiong, J. M. Chen, Y. L. Zhang, W. Li and G. J. Xu: Appl. Phys. Lett., 98 (2011) 022104.   DOI
11 Y. Ma, Q. Hao, B. Poudel, Y. Lan, B. Yu, D. Wang, G. Chen and Z. Ren: Nano Lett., 8 (2008) 2580.   DOI
12 S. Jimenez, J. G. Pereza, T. M. Tritt, S. Zhub, J. L. S. Sancheza, J.-M. Juareza and O. Lopez: Energy Convers. Manage., 87 (2014) 868.   DOI
13 Z.-Y. Li, M. Zou and J.-F. Li: J. Alloys Compd., 549 (2013) 319.   DOI
14 H. Li, H. Jing, Y. Han, G.-Q. Lu and L. Xu: Intermetallics, 43 (2013) 16.   DOI
15 M. H. Bhuiyan, T.-S. Kim, J. M. Koo and S.-J. Hong: J. Alloys Compd., 509 (2011) 1722.   DOI
16 X. A. Fan, J. Y. Yang, R. G. Chen, W. Zhu and S. Q. Bao: Mater. Sci. Eng. A, 438 (2006) 190.