• Title/Summary/Keyword: Adsorption Capacity

Search Result 1,295, Processing Time 0.024 seconds

Effects of pyrolysis temperature of the waste cattle bone char on the fluoride adsorption characteristics (소뼈의 소성 온도가 골탄의 불소흡착 특성에 미치는 영향)

  • Kim, Junyoung;Hwang, Jiyeon;Choi, Younggyun;Shin, Gwyam
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this study, the physicochemical characteristics and fluoride adsorption capacity of the bone char pyrolyzed at different temperatures; 200℃, 300℃, 350℃, 400℃, 500℃, 600℃, and 700℃ were investigated. Analytical studies of the synthesized bone char including; SEM-EDS, XRD, BET and FT-IR, showed the presence of hydroxyapatite(HAP), which is the main substance that adsorbs fluoride from aqueous solutions containing high fluoride concentrations. Bone char pyrolyzed from 350~700℃ specifically revealed that, the lower the temperature, the higher the fluoride adsorption capacity and vice versa. The loss of the fluoride adsorption function of HAP (OH- band in the FTIR analysis) was interpreted as the main reason behind this inverse correlation between temperature and fluoride adsorption. Bone char produced at 350℃ hence exhibited a fluoride adsorption capacity of 10.56 mgF/g, resulting in significantly higher adsorption compared to previous studies.

The Possibility of Utilizing Stone Powder Sludges as Adsorbents for Heavy Metals (중금속 흡착제로서 석분슬러지의 활용 가능성)

  • 진호일;민경원
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.519-524
    • /
    • 2000
  • This study has been performed to evaluate the possibility of utilizing stone powder sludges from stone quarry and manufacturing plant as adsorbents for heavy metals in industrial wastewater. The stone powder sludges from stone quarry (IS-01) have the most effective adsorption capacity (above 95% of initial concentrations) under the given experimental conditions of reaction times (Pb : 15 min, Cu : 2 hr, Zn : 48 hr), initial acidity of solution (pH>3) and dosage (sludge/liquid ratio : 0.02). The stone powder sludges from manufacturing plant (CW-01) show relatively high adsorption capacity (about 95% of initial concentrations) only for Pb with a reaction times of 12 hours, initial acidity of solution (pH>3) and dosage (sludge/liquid ratio : 0.02). The stone powder sludges (IS-01) from stone quarry having relatively excellent adsorption capacity under the given experimental conditions show their potential utilization as heavy metal adsorbents.

  • PDF

An Experimental Study of Adsorption Chiller using Silica gel-Water (실리카겔-물계 흡착식 냉동기에 관한 실험적 연구)

  • Kwon, Oh-Kyung;Yun, Jae-Ho;Kim, Joung-Ha
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1119-1124
    • /
    • 2006
  • The objectives of this paper are to investigate the performance of silica gel-water adsorption refrigeration system with heat recovery process from the system experiment. This system can be driven by waste heat at near ambient temperature from $60^{\circ}C$ to $90^{\circ}C$. The cooling capacity and coefficient of performance(COP) were measured from various experimental conditions. An experimental results revealed the influence of operating temperatures(hot, cooling and chilled water), water flow rates, and adsorption-desorption cycle times on cooling capacity and COP. Under the standard conditions of $80^{\circ}C$ hot water, $25^{\circ}C$ cooling water, $14^{\circ}C$ chilled water inlet temperatures and 420sec cycle time, a cooling capacity of 1.14kW and a COP for cooling of 0.55 can be achieved.

  • PDF

Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons

  • Yoo, Hye-Min;Lee, Seul-Yi;Kim, Byung-Joo;Park, Soo-Jin
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.112-115
    • /
    • 2011
  • The scope of this work investigates the relationship between the amount of oxygen-functional groups and hydrogen adsorption capacity with different concentrations of phosphoric acid. The amount of oxygen-functional groups of activated carbons (ACs) is characterized by X-ray photoelectron spectroscopy. The effects of chemical treatments on the pore structures of ACs are investigated by $N_2$/77 K adsorption isotherms. The hydrogen adsorption capacity is measured by $H_2$ isothermal adsorption at 298 K and 100 bar. In the results, the specific surface area and pore volume slightly decreased with the chemical treatments due to the pore collapsing behaviors, but the hydrogen storage capacity was increased by the oxygen-functional group characteristics of AC surfaces, resulting from enhanced electron acceptor-donor interaction at interfaces.

Molecular size distribution of NOM after ozonation and its effect on adsorption with activated carbon (NOM의 오존처리에 따른 분자크기분포변화가 활성탄 흡착에 미치는 영향)

  • Lee, Hyung-Jik;Hong, Seong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.805-813
    • /
    • 2013
  • In this study, molecular size distribution of natural organic matter (NOM) after ozonation was measured and its effect on adsorption capacity of activated carbon was investigated. According to the results, the molecular size of NOM was limitedly changed. Specifically, the molecular size of NOM between 5,000 to 10,000 Da were slightly decreased with increasing ozone doses. The adsorption capacity after ozonation was evaluated using Freundlich isotherm with ideal adsorbed solution theory (IAST) which simulated the multi components adsorption. Further, mini-column test was conducted. The Freundlich constant, K was reduced after ozonation and the non-adsorbable fraction was increased with ozonation. However, no correlation between K and ozone doses was found. The present study also agreed with the correlation between adsorption capacity and pore size characteristics of activated carbon.

The Evaluation of CO Adsorbents Used in PSA Process for the Purification of Reformed Hydrogen (개질 수소 정제용 PSA 공정을 위한 CO 흡착제의 성능 평가)

  • PARK, JIN-NAM
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.628-635
    • /
    • 2016
  • Natural gas reformed hydrogen is used as a fuel of fuel cell vehicle, PSA process is used for the purification of reformed hydrogen. In this study, the performance of CO adsorbent in PSA process was evaluated. Zeolite adsorbents used in the commercial PSA process is used. The physical and chemical properties of adsorbents were characterized using BET apparatus, XRD, and FE-SEM. The breakthrough apparatus modified from GC was used for the CO breakthrough experiment, the quantitative analysis of CO adsorption capacity was performed using CO breakthrough curve. Zeolite 10X and 13X showed superior CO adsorption capacity than activated alumina. The CO adsorption capacity of zeolite 10X is more than twice of zeolite 13X even the BET surface area is low. It seems that the presence of $Ca^{2+}$ cation in zeolite 10X is beneficial to the adsorption of CO.

Adsorption of Nucleotides on ${\beta}$-Cyclodextrin Derivative Grafted Chitosan

  • Xiao Jian-Bo;Yu Hong-Zhu;Xu Ming;Chen Xiao-Qing
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.443-448
    • /
    • 2006
  • A novel ${\beta}$-cyclodextrin derivative (CCD-C) was synthesized with chitosan and carboxymethyl-${\beta}$-cyclodextrin. Its structure was characterized by elemental analysis, infrared spectra analysis, and X-ray diffraction analysis. The adsorption properties for guanosine 5'-monophosphate, cytidine 5'-monophosphate and uridine 5'-monophosphate were studied. Experimental results demonstrated that CCD-C had higher adsorption capability for guanosine 5'-monophosphate, and that the adsorption capacity for guanosine 5'-monophosphate was 74.20mg/g. The adsorption capacity was greatly influenced by pH, time and temperature. The introduction of chitosan enhanced the adsorption ability and adsorption selectivity of ${\beta}$-cyclodextrin for guanosine 5'-monophosphate. This novel derivative of chitosan is expected to have wide applications in the separation, concentration and analysis of nucleotides in biological samples.

Adsorption of Heavy Metal Ions(Cadmium etc.) using Chitosan Bead (Chitosan Bead를 이용한 Cd등의 중금속 이온의 흡착제거)

  • 권성환;김기환;장문석;유재근
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.3
    • /
    • pp.21-27
    • /
    • 1996
  • Chitosan is a natural polyelectrolytic compound. Researches of adsorption capacity using chitosan have been doing actively. We prepared bead type gel, simple modifier of chitosan, And then experimented adsorption test of heavy metals (Cd etc) using it. According to the result adsorption capacity of chitosan bead was five times higher than chitosan powder. Removal rate of cadmium resulted 90% over in the test that initial concentration of Cd was 100mg/L and bead dosage was 6g/100mL. Adsorption type of heavy metals was similar to general adsorption curve. And optical pH range was 4 - 10 in the adsorption test. In the experiments of other heavy metals (Pb, Zn, Cu, Mn) adsorption types had two stages, highly removal rate-stage at the short time (20minutes) and then slow rate-stage at the after. And removal efficiency at the variable pH ranges revealed relatively good.

  • PDF

Low Temperature Adsorption of Hydrogen on Nanoporous Materials

  • Jhung, Sung-Hwa;Yoon, Ji-Woong;Kim, Hye-Kyung;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1075-1078
    • /
    • 2005
  • Hydrogen adsorption on various porous materials have been studied with a volumetric method at low temperature in the pressure of 0-760 torr. Their hydrogen uptakes depend at least partly on microporosity rather than total porosity. However, it is also necessary to consider other parameters such as pore size and pore architecture to explain the adsorption capacity. The heat of adsorption and adsorption-desorption-readsorption experiments show that the hydrogen adsorption over the porous materials are composed of physisorption with negligible contribution of chemisorption. Among the porous materials studied in this work, SAPO-34 has the highest adsorption capacity of 160 mL/g at 77 K and 1 atm probably due to high micropore surface area, micropore volume and narrow pore diameter.

Applicability of Composite Beads, Spent Coffee Grounds/Chitosan, for the Adsorptive Removal of Pb(II) from Aqueous Solutions

  • Choi, Hee-Jeong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.536-545
    • /
    • 2019
  • An experiment was conducted to evaluate the adsorptive removal of Pb(II) from an aqueous solution using a mixture of spent coffee grounds and chitosan on beads (CC-beads). Various parameters affecting the adsorption process of Pb(II) using CC-beads were investigated. Based on the experimental data, the adsorption kinetics and adsorption isotherms were analyzed for their adsorption rate, maximum adsorption capacity, adsorption energy and adsorption strength. Moreover, the entropy, enthalpy and free energy were also calculated by thermodynamic analysis. According to the FT-IR analysis, a CC-bead has a very suitable structure for easy heavy metal adsorption. The process of adsorbing Pb(II) using CC-beads was suitable for pseudo-second order kinetic and Langmuir model, with a maximum adsorption capacity of 163.51 (mg/g). The adsorption of Pb(II) using CC-beads was closer to chemical adsorption than physical adsorption. In addition, the adsorption of Pb(II) on CC-beads was exothermic and spontaneous in nature. CC-beads are economical because they are inexpensive and also the waste can be recycled, which is very significant in terms of the continuous circulation of resources. Thus, CC-beads can compete with other adsorbents.