DOI QR코드

DOI QR Code

Influence of phosphoric acid treatment on hydrogen adsorption behaviors of activated carbons

  • Yoo, Hye-Min (Department of Chemistry, Inha University) ;
  • Lee, Seul-Yi (Department of Chemistry, Inha University) ;
  • Kim, Byung-Joo (Smart Composite Material Research Team, Carbon Valley R&D Division, Jeonju Institute of Machinery and Carbon Composites) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • Received : 2011.04.15
  • Accepted : 2011.05.23
  • Published : 2011.06.30

Abstract

The scope of this work investigates the relationship between the amount of oxygen-functional groups and hydrogen adsorption capacity with different concentrations of phosphoric acid. The amount of oxygen-functional groups of activated carbons (ACs) is characterized by X-ray photoelectron spectroscopy. The effects of chemical treatments on the pore structures of ACs are investigated by $N_2$/77 K adsorption isotherms. The hydrogen adsorption capacity is measured by $H_2$ isothermal adsorption at 298 K and 100 bar. In the results, the specific surface area and pore volume slightly decreased with the chemical treatments due to the pore collapsing behaviors, but the hydrogen storage capacity was increased by the oxygen-functional group characteristics of AC surfaces, resulting from enhanced electron acceptor-donor interaction at interfaces.

Keywords

References

  1. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature, 414, 353 (2001). doi: 10.1038/35104634.
  2. Elam CC, Padro CEG, Sandrock G, Luzzi A, Lindblad P, Hagen EF. Realizing the hydrogen future: the International Energy Agency's efforts to advance hydrogen energy technologies. Int J Hydrogen Energy, 28, 601 (2003). doi: 10.1016/s0360-3199(02)00147-7.
  3. Dillon AC, Heben MJ. Hydrogen storage using carbon adsorbents: past, present and future. Appl Phys A: Mater Sci Process, 72, 133 (2001). doi: 10.1007/s003390100788.
  4. Xu WC, Takahashi K, Matsuo Y, Hattori Y, Kumagai M, Ishiyama S, Kaneko K, Iijima S. Investigation of hydrogen storage capacity of various carbon materials. Int J Hydrogen Energy, 32, 2504 (2007). doi: 10.1016/j.ijhydene.2006.11.012.
  5. Zacharia R, Kim KY, Hwang SW, Nahm KS. Intrinsic linear scaling of hydrogen storage capacity of carbon nanotubes with the specific surface area. Catal Today, 120, 426 (2007). doi: 10.1016/j.cattod.2006.09.026
  6. Park SJ, Lee SY. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes. Int J Hydrogen Energy, 35, 13048 (2010). doi: 10.1016/j.ijhydene.2010.04.083.
  7. Park SJ, Kim BJ, Lee YS. Patent trends of carbonaceous materials for hydrogwn storage (III): major applicants & technology flowchart. Carbon Lett, 9, 35 (2008). https://doi.org/10.5714/CL.2008.9.1.035
  8. Park SJ, Kim BJ, Lee YS, Cho MJ. Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers. Int J Hydrogen Energy, 33, 1706 (2008). doi: 10.1016/j.ijhydene.2008.01.011.
  9. Ma LP, Wu ZS, Li J, Wu ED, Ren WC, Cheng HM. Hydrogen adsorption behavior of graphene above critical temperature. Int J Hydrogen Energy, 34, 2329 (2009). doi: 10.1016/j.ijhydene.2008.12.079.
  10. Lopez-Corral I, German E, Volpe MA, Brizuela GP, Juan A. Tightbinding study of hydrogen adsorption on palladium decorated graphene and carbon nanotubes. Int J Hydrogen Energy, 35, 2377 (2010). doi: 10.1016/j.ijhydene.2009.12.155.
  11. Chen GX, Hong MH, Ong TS, Lam HM, Chen WZ, Elim HI, Ji W, Chong TC. Carbon nanoparticles based nonlinear optical liquid. Carbon, 42, 2735 (2004). doi: 10.1016/j.carbon.2004.05.035.
  12. Huang CC, Chen HM, Chen CH. Hydrogen adsorption on modified activated carbon. Int J Hydrogen Energy, 35, 2777 (2010). doi: 10.1016/j.ijhydene.2009.05.016.
  13. Panella B, Hirscher M, Roth S. Hydrogen adsorption in different carbon nanostructures. Carbon, 43, 2209 (2005). doi: 10.1016/j.carbon.2005.03.037.
  14. Li J, Cheng S, Zhao Q, Long P, Dong J. Synthesis and hydrogenstorage behavior of metal-organic framework MOF-5. Int J Hydrogen Energy, 34, 1377 (2009). doi: 10.1016/j.ijhydene.2008.11.048.
  15. Park SJ, Jang YS. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI). J Colloid Interface Sci, 249, 458 (2002). doi:10.1006/jcis.2002.8269.
  16. Park SJ, Jin SY. Effect of ozone treatment on ammonia removal of activated carbons. J Colloid Interface Sci, 286, 417 (2005). doi:10.1016/j.jcis.2005.01.043.
  17. Moreno-Castilla C, Lopez-Ramon MV, Carrasco-Marin F. Changples in surface chemistry of activated carbons by wet oxidation. Carbon, 38, 1995 (2000). doi: 10.1016/s0008-6223(00)00048-8.
  18. Park SJ, Lee SY. Hydrogen storage behaviors of carbon nanotubes/ metal-organic frameworks-5 hybrid composites. Carbon Lett, 10, 19 (2009). https://doi.org/10.5714/CL.2009.10.1.019
  19. Rather SU, Zacharia R, Naik M-u-d, Hwang SW, Kim AR, Nahm KS. Surface adsorption and micropore filling of the hydrogen in activated MWCNTs. Int J Hydrogen Energy, 33, 6710 (2008). doi:10.1016/j.ijhydene.2008.08.040.
  20. Lee SY, Park SJ. Effect of temperature on activated carbon nanotubes for hydrogen storage behaviors. Int J Hydrogen Energy, 35, 6757 (2010). doi: 10.1016/j.ijhydene.2010.03.114.
  21. Lee SY, Park SJ. Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes. Mater Chem Phys, 124, 1011 (2010). doi: 10.1016/j.matchemphys.2010.08.022.

Cited by

  1. Comprehensive review on synthesis and adsorption behaviors of graphene-based materials vol.13, pp.2, 2012, https://doi.org/10.5714/CL.2012.13.2.073
  2. Effect of KOH Activation on Electrochemical Behaviors of Graphite Nanofibers vol.36, pp.3, 2012, https://doi.org/10.7317/pk.2012.36.3.321
  3. A review: methane capture by nanoporous carbon materials for automobiles vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.018