References
- Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature, 414, 353 (2001). doi: 10.1038/35104634.
- Elam CC, Padro CEG, Sandrock G, Luzzi A, Lindblad P, Hagen EF. Realizing the hydrogen future: the International Energy Agency's efforts to advance hydrogen energy technologies. Int J Hydrogen Energy, 28, 601 (2003). doi: 10.1016/s0360-3199(02)00147-7.
- Dillon AC, Heben MJ. Hydrogen storage using carbon adsorbents: past, present and future. Appl Phys A: Mater Sci Process, 72, 133 (2001). doi: 10.1007/s003390100788.
- Xu WC, Takahashi K, Matsuo Y, Hattori Y, Kumagai M, Ishiyama S, Kaneko K, Iijima S. Investigation of hydrogen storage capacity of various carbon materials. Int J Hydrogen Energy, 32, 2504 (2007). doi: 10.1016/j.ijhydene.2006.11.012.
- Zacharia R, Kim KY, Hwang SW, Nahm KS. Intrinsic linear scaling of hydrogen storage capacity of carbon nanotubes with the specific surface area. Catal Today, 120, 426 (2007). doi: 10.1016/j.cattod.2006.09.026
- Park SJ, Lee SY. Hydrogen storage behaviors of platinum-supported multi-walled carbon nanotubes. Int J Hydrogen Energy, 35, 13048 (2010). doi: 10.1016/j.ijhydene.2010.04.083.
- Park SJ, Kim BJ, Lee YS. Patent trends of carbonaceous materials for hydrogwn storage (III): major applicants & technology flowchart. Carbon Lett, 9, 35 (2008). https://doi.org/10.5714/CL.2008.9.1.035
- Park SJ, Kim BJ, Lee YS, Cho MJ. Influence of copper electroplating on high pressure hydrogen-storage behaviors of activated carbon fibers. Int J Hydrogen Energy, 33, 1706 (2008). doi: 10.1016/j.ijhydene.2008.01.011.
- Ma LP, Wu ZS, Li J, Wu ED, Ren WC, Cheng HM. Hydrogen adsorption behavior of graphene above critical temperature. Int J Hydrogen Energy, 34, 2329 (2009). doi: 10.1016/j.ijhydene.2008.12.079.
- Lopez-Corral I, German E, Volpe MA, Brizuela GP, Juan A. Tightbinding study of hydrogen adsorption on palladium decorated graphene and carbon nanotubes. Int J Hydrogen Energy, 35, 2377 (2010). doi: 10.1016/j.ijhydene.2009.12.155.
- Chen GX, Hong MH, Ong TS, Lam HM, Chen WZ, Elim HI, Ji W, Chong TC. Carbon nanoparticles based nonlinear optical liquid. Carbon, 42, 2735 (2004). doi: 10.1016/j.carbon.2004.05.035.
- Huang CC, Chen HM, Chen CH. Hydrogen adsorption on modified activated carbon. Int J Hydrogen Energy, 35, 2777 (2010). doi: 10.1016/j.ijhydene.2009.05.016.
- Panella B, Hirscher M, Roth S. Hydrogen adsorption in different carbon nanostructures. Carbon, 43, 2209 (2005). doi: 10.1016/j.carbon.2005.03.037.
- Li J, Cheng S, Zhao Q, Long P, Dong J. Synthesis and hydrogenstorage behavior of metal-organic framework MOF-5. Int J Hydrogen Energy, 34, 1377 (2009). doi: 10.1016/j.ijhydene.2008.11.048.
- Park SJ, Jang YS. Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI). J Colloid Interface Sci, 249, 458 (2002). doi:10.1006/jcis.2002.8269.
- Park SJ, Jin SY. Effect of ozone treatment on ammonia removal of activated carbons. J Colloid Interface Sci, 286, 417 (2005). doi:10.1016/j.jcis.2005.01.043.
- Moreno-Castilla C, Lopez-Ramon MV, Carrasco-Marin F. Changples in surface chemistry of activated carbons by wet oxidation. Carbon, 38, 1995 (2000). doi: 10.1016/s0008-6223(00)00048-8.
- Park SJ, Lee SY. Hydrogen storage behaviors of carbon nanotubes/ metal-organic frameworks-5 hybrid composites. Carbon Lett, 10, 19 (2009). https://doi.org/10.5714/CL.2009.10.1.019
- Rather SU, Zacharia R, Naik M-u-d, Hwang SW, Kim AR, Nahm KS. Surface adsorption and micropore filling of the hydrogen in activated MWCNTs. Int J Hydrogen Energy, 33, 6710 (2008). doi:10.1016/j.ijhydene.2008.08.040.
- Lee SY, Park SJ. Effect of temperature on activated carbon nanotubes for hydrogen storage behaviors. Int J Hydrogen Energy, 35, 6757 (2010). doi: 10.1016/j.ijhydene.2010.03.114.
- Lee SY, Park SJ. Effect of chemical treatments on hydrogen storage behaviors of multi-walled carbon nanotubes. Mater Chem Phys, 124, 1011 (2010). doi: 10.1016/j.matchemphys.2010.08.022.
Cited by
- Comprehensive review on synthesis and adsorption behaviors of graphene-based materials vol.13, pp.2, 2012, https://doi.org/10.5714/CL.2012.13.2.073
- Effect of KOH Activation on Electrochemical Behaviors of Graphite Nanofibers vol.36, pp.3, 2012, https://doi.org/10.7317/pk.2012.36.3.321
- A review: methane capture by nanoporous carbon materials for automobiles vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.018