Adsorption of Nucleotides on ${\beta}$-Cyclodextrin Derivative Grafted Chitosan

  • Xiao Jian-Bo (College of Chemistry and Chemical Engineering, Central South University) ;
  • Yu Hong-Zhu (College of Chemistry and Chemical Engineering, Central South University) ;
  • Xu Ming (Research Institute for Molecular Pharmacology and Therapeutics, Central South University, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center) ;
  • Chen Xiao-Qing (College of Chemistry and Chemical Engineering, Central South University)
  • Published : 2006.08.01

Abstract

A novel ${\beta}$-cyclodextrin derivative (CCD-C) was synthesized with chitosan and carboxymethyl-${\beta}$-cyclodextrin. Its structure was characterized by elemental analysis, infrared spectra analysis, and X-ray diffraction analysis. The adsorption properties for guanosine 5'-monophosphate, cytidine 5'-monophosphate and uridine 5'-monophosphate were studied. Experimental results demonstrated that CCD-C had higher adsorption capability for guanosine 5'-monophosphate, and that the adsorption capacity for guanosine 5'-monophosphate was 74.20mg/g. The adsorption capacity was greatly influenced by pH, time and temperature. The introduction of chitosan enhanced the adsorption ability and adsorption selectivity of ${\beta}$-cyclodextrin for guanosine 5'-monophosphate. This novel derivative of chitosan is expected to have wide applications in the separation, concentration and analysis of nucleotides in biological samples.

Keywords

References

  1. G. Crini, Prog. Polym. Sci., 30, 38 (2005)
  2. T. C. Shi, Y. M. Jing, and D. X. Sui, J. Chromatogr., 742, 107 (1996) https://doi.org/10.1016/0021-9673(96)00260-9
  3. D. K. Kweon, S. B. Song, and Y. Y. Park, Biomaterials, 24, 1595 (2003) https://doi.org/10.1016/S0142-9612(02)00566-5
  4. E. Khnor and L. Lim, Biomaterials, 24, 2339 (2003) https://doi.org/10.1016/S0142-9612(03)00026-7
  5. T. Sato, T. Ishii, and Y. Okahata, Biomaterials, 22, 2075 (2001) https://doi.org/10.1016/S0142-9612(00)00385-9
  6. J. S. Mao, H. F. Liu, Y. J. Yin, and K. D. Yao, Biomaterials, 24, 1621 (2003) https://doi.org/10.1016/S0142-9612(02)00549-5
  7. M. Gingras, I. Paradis, and F. Berthod, Biomaterials, 24, 1653 (2003) https://doi.org/10.1016/S0142-9612(02)00572-0
  8. Y. C. Wang, M. C. Lin, D. M. Wang, and H. J. Hsieh, Biomaterials, 24, 1047 (2003) https://doi.org/10.1016/S0142-9612(02)00434-9
  9. A. B. Schnurch, M. Hornof, and T. Zoidl, Int. J. Pharm., 260, 229 (2003) https://doi.org/10.1016/S0378-5173(03)00271-0
  10. M. Prabaharan and J. F. Mano, Drug Deliv., 12, 41 (2005) https://doi.org/10.1080/10717540590889781
  11. K. Kurita, Prog. Polym. Sci., 26, 1921 (2001) https://doi.org/10.1016/S0079-6700(01)00007-7
  12. K. C. Gupta and M. N. V. R. Kumar, JMS-Rev Macromol. Chem. Phys., 40, 273 (2000)
  13. M. N. V. R. Kumar, React. Funct. Polym., 46 (2000)
  14. S. Hitoshi and A. Sei-ichi, Prog. Polym. Sci., 29, 887 (2004) https://doi.org/10.1016/j.progpolymsci.2004.04.001
  15. M. Prabaharan and J. F. Mano, Carbohyd. Polym., 63, 153 (2006) https://doi.org/10.1016/j.carbpol.2005.08.051
  16. A. J. Varma, S. V. Deshpande, and J. F. Kennedy, Carbohyd. Polym., 55, 77 (2004) https://doi.org/10.1016/j.carbpol.2003.08.005
  17. J. F. Grcic, D. Voinovich, M. Moneghini, M. B. Lacan, L. Magarotto, and I. Jalsenjak, Eur. J. Pharm. Sci., 9, 373 (2000) https://doi.org/10.1016/S0928-0987(99)00078-0
  18. S. Rossi, F. Ferrari, M. C. Bonferoni, and C. Caramella, Eur. J. Pharm. Sci., 10, 251 (2000) https://doi.org/10.1016/S0928-0987(00)00065-8
  19. H. J. Buschmann, D. Knittel, and E. Schollmeyer, J. Incl. Phenom. Macr., 40, 169 (2001) https://doi.org/10.1023/A:1011892600388
  20. Al E. M. Martin Del Valle, Process Biochem., 39, 1033 (2004) https://doi.org/10.1016/S0032-9592(03)00258-9
  21. R. S. R. Pablo, J. R. Isasi, and G. G. Gaitano, J. Photoch. Photobiol. A, 173, 248 (2005) https://doi.org/10.1016/j.jphotochem.2005.04.022
  22. S. Rozou, S. Michaleas, and E. A. Vyza, J. Chromatogr. A, 1087, 86 (2005) https://doi.org/10.1016/j.chroma.2005.02.039
  23. T. L. Wang, L. L. Yuan, and F. Y. Li, J. Chromatogr. A, 1013, 19 (2003) https://doi.org/10.1016/S0021-9673(03)01038-0
  24. J. Yang, H. J. Lin, and H. Y. Huang, Anal. Chim. Acta, 530, 213 (2005) https://doi.org/10.1016/j.aca.2004.09.008
  25. B. S. Jursic and P. K. Patel, Tetrahedron, 61, 919 (2005) https://doi.org/10.1016/j.tet.2004.11.021
  26. E. M. Martin Del Valle, Process Biochem., 39, 1033 (2004) https://doi.org/10.1016/S0032-9592(03)00258-9
  27. S. O. Fakayode, I. M. Swamidoss, M. A. Busch, and K. W. Busch, Talanta, 65, 838 (2005) https://doi.org/10.1016/j.talanta.2004.08.017
  28. K. N. Baglole, P. G. Boland, and B. D. Wagner, J. Photoch. Photobiol. A, 173, 230 (2005) https://doi.org/10.1016/j.jphotochem.2005.04.002
  29. P. Fini, M. Castagnolo, L. Catucci, P. Cosma, and A. Agostiano, Thermochim. Acta, 418, 33 (2004) https://doi.org/10.1016/j.tca.2003.11.041
  30. R. Auzely and M. Rinaudo, Macromol., 34, 3574 (2001) https://doi.org/10.1021/ma001873g
  31. V. Jiménez, J. Belmar, and J. B. Alderete, J. Incl. Phenom. Macr., 47, 71 (2003) https://doi.org/10.1023/B:JIPH.0000003878.83642.eb
  32. M. Prabaharan and J. F. Mano, Macromol. Biosci., 5, 965 (2005) https://doi.org/10.1002/mabi.200500087
  33. J. P. Venter, A. F. Kotze, R. Auzely-Velty, and M. Rinaudo, Int. J. Pharm., 313, 36 (2006) https://doi.org/10.1016/j.ijpharm.2006.01.016
  34. R. Auzély-Velty and M. Rinaudo, Macromolecules, 35, 7955 (2002) https://doi.org/10.1021/ma020664o
  35. F. Maestrelli, M. Garcia-Fuentes, P. Mura, and MJ. Alonso, Eur. J. Pharm. Sci., 63, 79 (2006)
  36. M. Jug and M. Becirevic-Lacan, Eur. J. Pharm. Sci., 21, 251 (2004) https://doi.org/10.1016/j.ejps.2003.10.029
  37. Y. H. Zhou, W. T. An, G. M. Zhang, and S. M. Shuang, J. of Shanxi Univ., 28, 276 (2005)