Browse > Article
http://dx.doi.org/10.14478/ace.2019.1039

Applicability of Composite Beads, Spent Coffee Grounds/Chitosan, for the Adsorptive Removal of Pb(II) from Aqueous Solutions  

Choi, Hee-Jeong (Department of Health and Environment, Catholic Kwandong University)
Publication Information
Applied Chemistry for Engineering / v.30, no.5, 2019 , pp. 536-545 More about this Journal
Abstract
An experiment was conducted to evaluate the adsorptive removal of Pb(II) from an aqueous solution using a mixture of spent coffee grounds and chitosan on beads (CC-beads). Various parameters affecting the adsorption process of Pb(II) using CC-beads were investigated. Based on the experimental data, the adsorption kinetics and adsorption isotherms were analyzed for their adsorption rate, maximum adsorption capacity, adsorption energy and adsorption strength. Moreover, the entropy, enthalpy and free energy were also calculated by thermodynamic analysis. According to the FT-IR analysis, a CC-bead has a very suitable structure for easy heavy metal adsorption. The process of adsorbing Pb(II) using CC-beads was suitable for pseudo-second order kinetic and Langmuir model, with a maximum adsorption capacity of 163.51 (mg/g). The adsorption of Pb(II) using CC-beads was closer to chemical adsorption than physical adsorption. In addition, the adsorption of Pb(II) on CC-beads was exothermic and spontaneous in nature. CC-beads are economical because they are inexpensive and also the waste can be recycled, which is very significant in terms of the continuous circulation of resources. Thus, CC-beads can compete with other adsorbents.
Keywords
Adsorption; Chitosan; Spent coffee grounds; Hybrid bead; Heavy metal; Lead;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Z. Aksu and E. Kabasakal, Batch adsorption of 2,4-dichlorophenoxy-acetic acid (2,4-D) from aqueous solution by granular activated carbon, Sep. Purif. Technol., 35(3), 223-240 (2004).   DOI
2 M. Horsfall and A. I. Spitt, Effects of temperature on the sorption of $Pb^{2+}$ and $Cd^{2+}$ from aqueous solution by caladium bicolor (Wild Cocoyam) biomass, Afr. J. Biotechnol., 4(2), 191-196 (2005).
3 S. Y. Ho and G. McKay, Application of kinetic models to the of copper(II) on to peat, Adsorp. Sci. Technol., 20(8), 797-815 (2002).   DOI
4 F. C. Wu, R. L. Tseng, and R. S. Juang, Characteristics of elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems, Chem. Eng. J., 150(2-3), 366-373 (2009).   DOI
5 F. C. Wu, R. L. Tseng, and R. S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153, 1-8 (2009).   DOI
6 T. N. Weber and R. K. Chakravarti, Pore and solid diffusion models for fixed bed adsorbers, AIChE J., 20, 228-238 (1974).   DOI
7 S. Alpat, S. K. Alpat, B. H. Cadirci, O. Ozbayrak, and I. Yasa, Effects of biosorption parameter: Kinetics, isotherm and thermodynamics for Ni(II) biosorption from aqueous solution by Circinella sp, Electronic J. Biotechnol., 13(5), 1-19 (2010).
8 S. Y. Lee and H. J. Choi, Persimmon leaf bio-waste for adsorptive removal of heavy metals from aqueous solution, J. Environ. Manag., 209, 382-392 (2018).   DOI
9 C. Appel, L. Q. Ma, R. D. Rhue, and E. Kennelley, Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility, Geoderma, 113, 77-93 (2003).   DOI
10 Z. U. Ahmad, L. Yao, J. Wang, D. D. Gang, F. Islam, Q. Lian, and M. E. Zappi, Neodymium embedded ordered mesoporous carbon (OMC) for enhanced adsorption of sunset yellow: Characterization, adsorption study and adsorption mechanism, Chem. Eng. J., 359, 814-826 (2019).   DOI
11 I. Sargin and G. Arslan, Chitosan/sporopollenin microcapsules: Preparation, characterization and application in heavy metal removal, Int. J. Biol. Macromol., 75, 230-238 (2015).   DOI
12 S. S. Salih and T. K. Ghosh, Highly efficient competitive removal of Pb(II) and Ni(II) by chitosan/diatomaceous earth composite, J. Environ. Chem. Eng., 6(1), 435-443 (2018).   DOI
13 W. Nitayaphat, Chitosan/coffee residue composite beads for removal of reactive dye, Mater. Today Proc., 4, 6274-6283 (2017).   DOI
14 J. Maity and S. K. Ray, Chitosan based nano composite adsorbent-Synthesis, characterization and application for adsorption of binary mixtures of Pb(II) and Cd(II) from water, Carbohydr. Polym., 182, 159-171 (2018).   DOI
15 S. Y. Baek, V. H. Nguyen, and Y.H. Kim, Preparation of zeolite coated with metal-ferrite and adsorption characteristics of Cu(II), Appl. Chem. Eng., 30(1), 54-61 (2019).   DOI
16 C. H. Wu, C. Y. Kuo, and S. S. Guan, Adsorption kinetics of lead and zinc ions by coffee residues, Pol. J. Envion. Stud., 24, 761-767 (2015).
17 Y. Lu, J. He, and G. Luo, An improved synthesis of chitosan bead for Pb(II) adsorption, Chem. Eng. J., 226, 271-278 (2013).   DOI
18 G. Zhang, R. Qu, C. Sun, C. Ji, H. Chen, C. Wang, and Y. Niu, Adsorption for metal ions of chitosan coated cotton fiber, J. Appl. Polym. Sci., 110, 2321-2327 (2010).   DOI
19 M. Mozaffari, M. R. S. Emami, and E. Binaeian, A novel thiosemicarbazide modified chitosan (TSFCS) for efficiency removal of Pb(II) and methyl red from aqueous solution, Int. J. Biol. Macromol., 123, 457-467 (2019).   DOI
20 D. Wu, Y. Wang, Y. Li, Q. Wei, L. Hu, T. Yan, R. Feng, L. Yan, and B. Du, Phosphorylated chitosan/$CoFe_2O_4$ composite for the efficient removal of Pb(II) and Cd(II) from aqueous solution: Adsorption performance and mechanism studies, J. Mol. Liq., 277, 181-188 (2019).   DOI
21 S. W. Yu and H. J. Choi, Application of hybrid bead, persimmon leaf and chitosan for the treatment of aqueous solution contaminated with toxic heavy metal ions, Water Sci. Technol., 78(4), 837-847 (2018).   DOI
22 H. J. Choi and S. W. Yu, Application of novel hybrid bioadsorbent, tannin/chitosan/sericite, for the removal of Pb(II) toxic ion from aqueous solution, Korean J. Chem. Eng., 35(11), 2198-2206 (2018).   DOI
23 H. J. Choi, S. W. Yu, and K. H. Kim, Efficient use of Mg-modified zeolite in the treatment of aqueous solution contaminated with heavy metal toxic ions, J. Taiwan Inst. Chem. Eng., 63, 482-489 (2016).   DOI
24 H. J. Choi, Removal of Pb(II) from aqueous solution using hybrid adsorbent of sericite and spent coffee grounds, Appl. Chem. Eng., 29(5), 571-580 (2018).   DOI
25 N. Azouaou, Z. Sadaoui, A. Djaafri, and H. Mokaddem, Adsorption of cadimium from aqueous solution onto untreated coffee geounds: Equibrium, kinetics and thermodynamin, J. Hazard. Mater, 184, 126-134 (2010).   DOI
26 J. J. Lee, Study on isotherm, kinetic and thermodynamic parameters for adsorption of methyl green using activated carbon, Appl. Chem. Eng., 30(2), 190-197 (2019).   DOI
27 I. Anastopoulos, M. Karamesouti, A. C. Mitropoulos, and G. Z. Kyzas, A review for coffee adsorbents, J. Mol. Liq., 229, 555-565 (2017).   DOI
28 B. G. Alhogbi, Potential of coffee husk biomass waste for the adsorption of Pb(II) ion from aqueous solutions, Sustain. Chem. Pharm., 6, 21-25 (2017).   DOI
29 A. N. Babu, D. S. Reddy, G. S. Kumar, K. Ravindhranath, and G. V. K. Mohan, Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent, J. Environ. Manag., 218, 602-612 (2018).   DOI
30 F. J. Cerino-Cordova, P. E. Diaz-Flores, R. B. Garcia-Reyes, E. Soto-Regalado, R. Gomez-Gonzalez, M. T. Garza-Gonzalez, and E. Bustamante-Alcantara, Biosorption of Cu(II) and Pb(II) from aqueous solutions by chemically modified spent coffee grounds, Int. J. Environ. Sci. Technol., 10, 611-622 (2013).   DOI
31 A. A. Edathil, I. Shittu, J. H. Zain, F. Banat, and M. A. Haija, Novel magnetic coffee waste nanocomposite as effective bioadsorbent for Pb(II) removal from aqueous solutions, J. Environ. Chem. Eng., 6(2), 2390-2400 (2018).   DOI
32 N. B. Singh, G. Nagpal, S. Agrawal, and Rachna, Water purification by using adsorbents: A review, Environ. Technol. Innov., 11, 187-240 (2018).   DOI
33 R. Gomez-Gozalez, F. J. Cerino-Cordova, A. M. Garcia-Leon, E. Soto-Regalado, N. E. Davila-Guzman, and J. J. Salazar-Rabago, Lead adsorption onto coffee grounds: Comparative analysis of several optimization techniques using equilibrium adsorption models and ANN, J. Taiwan Inst. Chem. Eng., 68, 201-210 (2016).   DOI
34 E. F. Lessa, M. L. Nunes, and A. R. Fajardo, Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water, Carbohydr. Polym., 189, 257-266 (2018).   DOI
35 I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40(9), 1361-1403 (1918).   DOI
36 M. Li, Z. Zhang, R. Li, J. J. Wang, and A. Ali, Removal of Pb(II) and Cd(II) ins from aqueous solution by thiosemicarbazide modified chitosan, Int. J. Biol. Macromol., 86, 876-884 (2016).   DOI
37 R. M. Ali, H. A. Hamad, M. M. Hussein, and G. F. Malash, Potential of using green adsorbent of heavy metal removal from aqueous solutions: Adsorption kinetics, isotherm, thermodynamic, mechanism and economic analysis, Ecol. Eng., 91, 317-332 (2016).   DOI
38 A. Heidari, H. Younesi, Z. Mehraban, and H. Heikkinen, Selective adsorption of Pb(II), Cd(II) and Ni(II) ions from aqueous solution using chitosan-MAA nanoparticles, Int. J. Biol. Macromol., 61, 251-263 (2013).   DOI
39 H. Freundlich, Adsorptions technik, by Franz Krzil, J. Phys. Chem., 40(6), 857-858 (1936).   DOI
40 M. I. Tempkin and V. Pyzhev, Kinetics of ammonia synthesis on promoted iron catalyst, Acta Phys. Chem. URSS, 12, 327-356 (1940).
41 M. M. Dubinin, The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces, Chem. Rev., 60(2), 235-241 (1960).   DOI