• Title/Summary/Keyword: Admissible Variance

Search Result 7, Processing Time 0.02 seconds

The Admissible Multiperiod Mean Variance Portfolio Selection Problem with Cardinality Constraints

  • Zhang, Peng;Li, Bing
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.118-128
    • /
    • 2017
  • Uncertain factors in finical markets make the prediction of future returns and risk of asset much difficult. In this paper, a model,assuming the admissible errors on expected returns and risks of assets, assisted in the multiperiod mean variance portfolio selection problem is built. The model considers transaction costs, upper bound on borrowing risk-free asset constraints, cardinality constraints and threshold constraints. Cardinality constraints limit the number of assets to be held in an efficient portfolio. At the same time, threshold constraints limit the amount of capital to be invested in each stock and prevent very small investments in any stock. Because of these limitations, the proposed model is a mix integer dynamic optimization problem with path dependence. The forward dynamic programming method is designed to obtain the optimal portfolio strategy. Finally, to evaluate the model, our result of a meaning example is compared to the terminal wealth under different constraints.

ON THE ADMISSIBILITY OF HIERARCHICAL BAYES ESTIMATORS

  • Kim Byung-Hwee;Chang In-Hong
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.3
    • /
    • pp.317-329
    • /
    • 2006
  • In the problem of estimating the error variance in the balanced fixed- effects one-way analysis of variance (ANOVA) model, Ghosh (1994) proposed hierarchical Bayes estimators and raised a conjecture for which all of his hierarchical Bayes estimators are admissible. In this paper we prove this conjecture is true by representing one-way ANOVA model to the distributional form of a multiparameter exponential family.

Optimal actuator selection for output variance constrained control

  • 김재훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.565-569
    • /
    • 1993
  • In this paper, a specified number of actuators are selected from a given set of admissible actuators. The selected set of actuators is likely to use minimum control energy while required output variance constraints are guaranteed to be satisfied. The actuator selection procedure is an iterative algorithm composed of two parts; an output variance constrained control and an input variance constrained control algorithm. The idea behind this algorithm is that the solution to the first control problem provides the necessary weighting matrix in the objective function of the second optimization problem, and the sensitivity information from the second problem is utilized to delete one actuator. For variance constrained control problems, by considering a dual version of each control problem an efficient algorithm is provided, whose convergence properties turn out to be better than an existing algorithm. Numerical examples with a simple beam are given for both the input/output variance constrained control problem and the actuator selection problem.

  • PDF

Admissible Hierarchical Bayes Estimators of a Multivariate Normal Mean Shrinking towards a Regression Surface

  • Cho, Byung-Yup;Choi, Kuey-Chung;Chang, In-Hong
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.2
    • /
    • pp.205-216
    • /
    • 1996
  • Consider the problem of estimating a multivariate normal mean with an unknown covarience matrix under a weighted sum of squared error losses. We first provide hierarchical Bayes estimators which shrink the usual (maximum liklihood, uniformly minimum variance unbiased) estimator towards a regression surface and then prove the admissibility of these estimators using Blyth's (1951) method.

  • PDF

Design of Suboptimal Robust Kalman Filter for Linear Systems with Parameter Uncertainty (파라미터 불확실성을 갖는 선형 시스템에 대한 준최적 강인 칼만필터 설계)

  • Jin, Seung-Hee;Kim, Kyung-Keun;Park, Jin-Bae;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.620-623
    • /
    • 1997
  • This paper is concerned with the design of a suboptimal Kalman filter with robust state estimation performance for system models represented in the state space, which are subjected to parameter uncertainties in both the state and measurement matrices. Under the assumption that the uncertain system is quadratically stable, if the augmented system composed of the uncertain system and the filter is controllable, the proposed filter can provide the upper bound of the estimation error variance for all admissible uncertain parameters. This upper bound can be represented as the convex function of a parameter introduced in the design procedure, and the optimized upper bound of the estimation error variance can also be found via the optimization of this convex function.

  • PDF

Design of suboptimal robust kalman filter using LMI approach (LMI기법을 이용한 준최적 강인 칼만 필터의 설계)

  • 진승희;윤태성;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1477-1480
    • /
    • 1997
  • This paper is concerned with the design of a suboptimal robust Kalman filter using LMI approach for system models in the state space, which are subjected to parameter uncertainties in both the state and measurement atrices. Under the assumption that augmented system composed of the uncertain system and the state estimation error dynamics should be stable, a Lyapunov inequality is obtained. And from this inequaltiy, the filter design problem can be transformed to the gneric LMI problems i.e., linear objective minimization problem and generalized eigenvalue minimization problem. When applied to uncertain linear system modles, the proposed filter can provide the minimum upper bound of the estimation error variance for all admissible parameter uncertainties.

  • PDF

Error Analysis of the Exponential RLS Algorithms Applied to Speech Signal Processing

  • Yoo, Kyung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.3E
    • /
    • pp.78-85
    • /
    • 1996
  • The set of admissible time-variations in the input signal can be separated into two categories : slow parameter changes and large parameter changes which occur infrequently. A common approach used in the tracking of slowly time-varying parameters is the exponential recursive least-squares(RLS) algorithm. There have been a variety of research works on the error analysis of the exponential RLS algorithm for the slowly time-varying parameters. In this paper, the focus has been given to the error analysis of exponential RLS algorithms for the input data with abrupt property changes. The voiced speech signal is chosen as the principal application. In order to analyze the error performance of the exponential RLS algorithm, deterministic properties of the exponential RLS algorithms is first analyzed for the case of abrupt parameter changes, the impulsive input(or error variance) synchronous to the abrupt change of parameter vectors actually enhances the convergence of the exponential RLS algorithm. The analysis has also been verified through simulations on the synthetic speech signal.

  • PDF